SECTION-A

 Two objects of mass 10 kg and 20 kg respectively are connected to the two ends of a rigid rod of length 10 m with negligible mass. The distance of the center of mass of the system from the 10 kg mass is

(1) 5 m

(2) $\frac{10}{3}$ m

(3) $\frac{20}{3}$ m

(4) 10 m

Answer (3)

2. Match List-I with List-II

	List-I (Electromagnetic waves)		List-II (Wavelength)
(a)	AM radio waves	(i)	10 ⁻¹⁰ m
(b)	Microwaves	(ii)	10 ² m
(c)	Infrared radiations	(iii)	10 ⁻² m
(d)	X-rays	(iv)	10 ⁻⁴ m

Choose the correct answer from the options given below

(1) (a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)

(2) (a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)

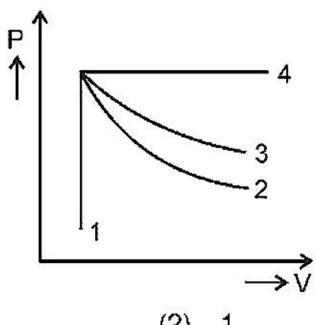
(3) (a) - (iii), (b) - (ii), (c) - (i), (d) - (iv)

(4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

Answer (1)

3. The energy that will be ideally radiated by a 100 kW transmitter in 1 hour is

(1) $1 \times 10^5 \text{ J}$


(2) $36 \times 10^7 \text{ J}$

(3) $36 \times 10^4 \text{ J}$

(4) $36 \times 10^5 \text{ J}$

Answer (2)

4. An ideal gas undergoes four different processes from the same initial state as shown in the figure below. Those processes are adiabatic, isothermal, isobaric and isochoric. The curve which represents the adiabatic process among 1, 2, 3 and 4 is

(1) 4

(2)

(3) 2

(4) 3

Answer (3)

- 5. Plane angle and solid angle have
 - (1) Both units and dimensions

(2) Units but no dimensions

(3) Dimensions but no units

(4) No units and no dimensions

Answer (2)

- 6. In half wave rectification, if the input frequency is 60 Hz, then the output frequency would be
 - (1) 120 Hz

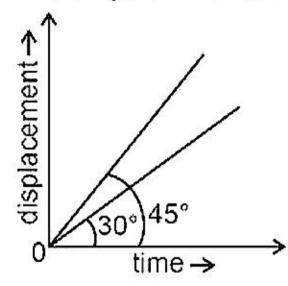
(2) Zero

(3) 30 Hz

(4) 60 Hz

Answer (4)

- When two monochromatic lights of frequency, v and $\frac{v}{2}$ are incident on a photoelectric metal, their stopping potential becomes $\frac{V_s}{2}$ and V_s respectively. The threshold frequency for this metal is
 - (1) $\frac{3}{2}$ v


(2) 2v

(3) 3v

(4) $\frac{2}{3}v$

Answer (1*)

8. The displacement-time graphs of two moving particles make angles of 30° and 45° with the x-axis as shown in the figure. The ratio of their respective velocity is

(1) 1:√3

(2) √3:1

(3) 1:1

(4) 1:2

Answer (1)

- 9. The dimensions [MLT⁻²A⁻²] belong to the
 - (1) Electric permittivity

(2) Magnetic flux

(3) Self inductance

(4) Magnetic permeability

Answer (4)

- 10. The peak voltage of the ac source is equal to
 - (1) $1/\sqrt{2}$ times the rms value of the ac source
- (2) The value of voltage supplied to the circuit
- (3) The rms value of the ac source
- (4) $\sqrt{2}$ times the rms value of the ac source

Answer (4)

- 11. The ratio of the distances travelled by a freely falling body in the 1st, 2nd, 3rd and 4th second
 - (1) 1:1:1:1

(2) 1:2:3:4

(3) 1:4:9:16

(4) 1:3:5:7

12.	A body of mass 60 g experiences a gravitation magnitude of the gravitational field intensity at the	nal force of 3.0 N, when placed at a particular point. The nat point is
	(1) 180 N/kg	
	(2) 0.05 N/kg	
	(3) 50 N/kg	
	(4) 20 N/kg	
	Answer (3)	
13.	In the given nuclear reaction, the element X is	
	$^{22}_{11}$ Na $\rightarrow X + e^{+} + v$	
	(1) ²² ₁₂ Mg	(2) ²³ ₁₁ Na
	(3) ²³ ₁₀ Ne	(4) $^{22}_{10}$ Ne
	Answer (4)	
14.	If a soap bubble expands, the pressure inside the	e bubble
	(1) Is equal to the atmospheric pressure	(2) Decreases
	(3) Increases	(4) Remains the same
	Answer (2)	
15.	40 40 40 40 40 10 50 50 50 50 50 50 50 50 50 50 50 50 50	e connected in parallel in an electrical circuit. The ratio of the
	thermal energy developed in 100 Ω to that in 200 (1) 4:1	
	(3) 2:1	(2) 1:2 (4) 1:4
	Answer (3)	(4)
16.		R_2 ($R_1 >> R_2$) have equal charges. The potential would be
	(1) Dependent on the material property of the s	
	(2) More on bigger sphere	
	(3) More on smaller sphere	
	(4) Equal on both the spheres	
	Answer (3)	
17.	The angular speed of a fly wheel moving with unround in 16 seconds. The angular acceleration in ra	niform angular acceleration changes from 1200 rpm to 3120 rad/s² is
	(1) 104π	(2) 2π
	(3) 4π	(4) 12π
	Answer (3)	
18.	When light propagates through a material media velocity of light, ν is given by (c -velocity of light in	um of relative permittivity ϵ_r and relative permeability μ_r , then note that the normal content is a second content.
	$(1) v = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$	(2) v = c
	$(3) \qquad \nu = \sqrt{\frac{\mu_r}{\varepsilon_r}}$	$(4) v = \sqrt{\frac{\varepsilon_r}{\mu_r}}$
	Answer (1)	

19.	A long solenoid of radius 1 mm has 100 turns per mm. If 1 A current flows in the solenoid, the magnetic field strength at the centre of the solenoid is					
	(1)	6.28 × 10 ⁻⁴ T	(2)	$6.28 \times 10^{-2} \text{T}$		
	(3)	12.56 × 10 ⁻² T	(4)	12.56 × 10 ⁻⁴ T		
	Ans	swer (3)				
20.	A shell of mass m is at rest initially. It explodes into three fragments having mass in the ratio 2 : 2 : 1. If the fragments having equal mass fly off along mutually perpendicular directions with speed v , the speed of the third (lighter) fragment is					
	(1)	$3\sqrt{2}v$	(2)	V		
	(3)	$\sqrt{2}v$	(4)	$2\sqrt{2}v$		
	Ans	swer (4)				
21.	As t	he temperature increases, the electrical resistanc	e			
	(1)	Decreases for conductors but increases for sem	icond	luctors		
	(2)	Increases for both conductors and semiconductor	ors			
	(3)	Decreases for both conductors and semiconduc	tors			
	(4)	Increases for conductors but decreases for semi	cond	uctors		
	Ans	swer (4)				
22.		convex lens has radii of curvature, 20 cm each. If er of the lens is	the re	efractive index of the material of the lens is 1.5, the		
	(1)	Infinity	(2)	+2 D		
	(3)	+20 D	(4)	+5 D		
	Ans	swer (4)				
23.	Give	en below are two statements				
		tement I: Biot-Savart's law gives us the expresent element (Idl) of a current carrying conductor of		for the magnetic field strength of an infinitesimal		
		and the same transfer		's inverse square law of charge q , with the former hile the latter being produced by a vector source, q .		
	In lig	ght of above statements choose the most appropr	iate a	answer from the options given below		
	(1)	Statement I is incorrect and Statement II is corre	ect			
	(2)	Both Statement I and Statement II are correct				
	(3)	Both Statement I and Statement II are incorrect				
	(4)	Statement I is correct and Statement II is incorre	ct			
	Ans	swer (4)				
24.		quare loop of side 1 m and resistance 1 Ω is placendicular to the direction of magnetic field, the m		n a magnetic field of 0.5 T. If the plane of loop is tic flux through the loop is		
	(1)	Zero weber	(2)	2 weber		
	(3)	0.5 weber	(4)	1 weber		
	Ans	swer (3)				
25.	1.5	AND THE STATE OF THE PERSON OF THE STATE OF		ssengers) is moving up with a constant speed of N. The minimum power delivered by the motor to		
	(1)	23500	(2)	23000		
	(3)	20000	(4)	34500		
	Ans	swer (4)				

26.	A light ray falls on a glass surface of refractive index	√3	, at an angle 60°. The angle between the refracted
	and reflected rays would be		
	(1) 120°	(2)	30°
	(3) 60°	(4)	90°
	Answer (4)		
27.	A copper wire of length 10 m and radius $\left(\frac{10^{-2}}{\sqrt{\pi}}\right)$ m	has e	electrical resistance of 10 Ω . The current density in
	the wire for an electric field strength of 10 (V/m) is		
	(1) 10^5 A/m^2	(2)	10 ⁴ A/m ²
	(3) 10 ⁶ A/m ²	(4)	10 ⁻⁵ A/m ²
	Answer (1)		
28.	PN PN		
	(a)		
	TPIN NIP		
	(b)		
	N P N P		
	(c)		
	In the given circuits (a), (b) and (c), the potential drop	acro	ss the two <i>p-n</i> junctions are equal in
	(1) Both circuits (a) and (c)	(2)	Circuit (a) only
	(3) Circuit (b) only	(4)	Circuit (c) only
	Answer (1)	<u> </u>	
29.	If the initial tension on a stretched string is doubled, the wave along the string is	nen th	e ratio of the initial and final speeds of a transverse
	(1) 1:2	(2)	1:1
	(3) $\sqrt{2}:1$		1:√2
		(4)	1. VZ
	Answer (4)		
30.	The ratio of the radius of gyration of a thin uniform d to its plane to the radius of gyration of the disc about		
	(1) $1:\sqrt{2}$	(2)	2:1
	(3) $\sqrt{2}:1$	(4)	4:1
	Answer (3)		
31.	In a Young's double slit experiment, a student observation of the student of the student of the same region.	If the	wavelength of light is changed to 400 nm, then the

(2) 6

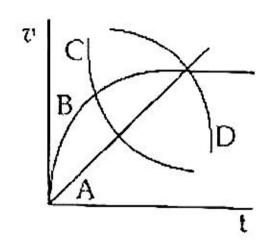
(4) 9

(1) 12

(3) 8

32. The angle between the electric lines of force and the equipotential surface is

(1) 180°


(2) 0°

(3) 45°

(4) 90°

Answer (4)

33. A spherical ball is dropped in a long column of a highly viscous liquid. The curve in the graph shown, which represents the speed of the ball (v) as a function of time (t) is

(1) D

(2) A

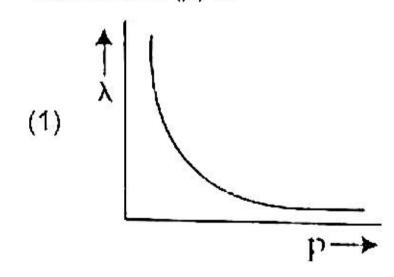
(3) B

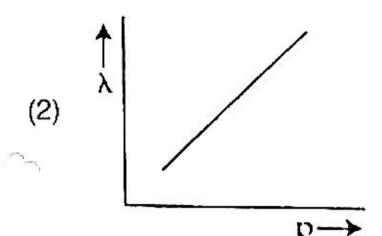
(4) C

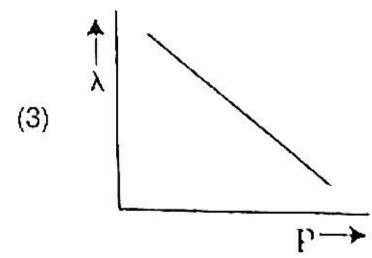
Answer (3)

34. Let T_1 and T_2 be the energy of an electron in the first and second excited states of hydrogen atoms, respectively. According to the Bohr's model of an atom, the ratio $T_1:T_2$ is

(1) 9:4


(2) 1:4


(3) 4:1


(4) 4:9


Answer (1)

35. The graph which shows the variation of the de Broglie wavelength (λ) of a particle and its associated momentum (p) is

Answer (1)

SECTION-B

36. Two pendulums of length 121 cm and 100 cm start vibrating in phase. At some instant, the two are at their mean position in the same phase. The minimum number of vibrations of the shorter pendulum after which the two are again in phase at the mean position is:

(1) 8

(2) 11

(3) 9

(4) 10

Answer (2)

- 37. The volume occupied by the molecules contained in 4.5 kg water at STP, if the intermolecular forces vanish away is
 - (1) 5.6 m³

(2) $5.6 \times 10^6 \text{ m}^3$

(3) $5.6 \times 10^3 \,\mathrm{m}^3$

(4) $5.6 \times 10^{-3} \text{ m}^3$

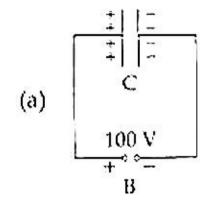
Answer (1)

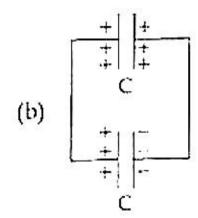
- 38. A nucleus of mass number 189 splits into two nuclei having mass number 125 and 64. The ratio of radius of two daughter nuclei respectively is
 - (1) 25:16
 - (2) 1:1
 - (3) 4:5
 - (4) 5:4

Answer (4)

39. Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The stretching of a spring is determined by the shear modulus of the material of the spring.


Reason (R): A coil spring of copper has more tensile strength than a steel spring of same dimensions.


In the light of the above statements, choose the most appropriate answer from the options given below

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are true and (R) is not the correct explanation of (A)
- (4) (A) is true but (R) is false

Answer (4)

40. A capacitor of capacitance C = 900 pF is charged fully by 100 V battery B as shown in figure (a). Then it is disconnected from the battery and connected to another uncharged capacitor of capacitance C = 900 pF as shown in figure (b). The electrostatic energy stored by the system (b) is

(1) $1.5 \times 10^{-6} \text{ J}$

(2) $4.5 \times 10^{-6} \text{ J}$

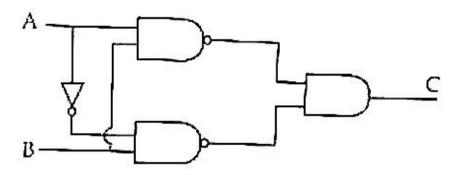
(3) $3.25 \times 10^{-6} \text{ J}$

(4) $2.25 \times 10^{-6} \text{ J}$

Answer (4)

- 41. From Ampere's circuital law for a long straight wire of circular cross-section carrying a steady current, the variation of magnetic field in the inside and outside region of the wire is
 - (1) A linearly decreasing function of distance upto the boundary of the wire and then a linearly increasing one for the outside region.
 - (2) Uniform and remains constant for both the regions.
 - (3) A linearly increasing function of distance upto the boundary of the wire and then linearly decreasing for the outside region.
 - (4) A linearly increasing function of distance r upto the boundary of the wire and then decreasing one with $\frac{1}{r}$ dependence for the outside region.

- 42. The area of a rectangular field (in m²) of length 55.3 m and breadth 25 m after rounding off the value for correct significant digits is
 - (1) 14×10^2


(2) 138×10^{1}

(3) 1382

(4) 1382.5

Answer (1)

43.

The truth table for the given logic circuit is

	Α	В	C
	0	0 1 0 1	0
(1)	0	1	1
	1	0	0
	1	1	1
	Λ	7	

 (3)
 0
 1
 0

 1
 0
 0

 1
 1
 1

Answer (4)

- 44. Two transparent media A and B are separated by a plane boundary. The speed of light in those media are 1.5×10^8 m/s and 2.0×10^8 m/s, respectively. The critical angle for a ray of light for these two media is
 - (1) tan-1 (0.750)

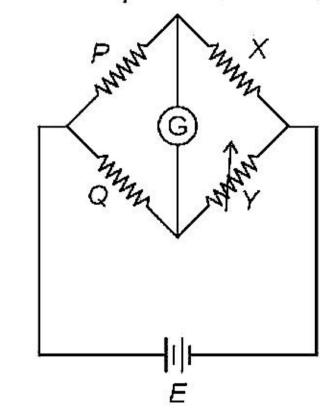
(2) $\sin^{-1}(0.500)$

(3) $\sin^{-1}(0.750)$

(4) tan-1 (0.500)

Answer (3)

- 45. A big circular coil of 1000 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s⁻¹. If the vertical component of earth's magnetic field at that place is 2×10^{-5} T and electrical resistance of the coil is 12.56Ω , then the maximum induced current in the coil will be
 - (1) 2 A


(2) 0.25 A

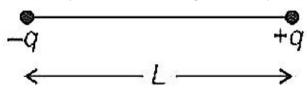
(3) 1.5 A

(4) 1 A

Answer (4)

46. A wheatstone bridge is used to determine the value of unknown resistance X by adjusting the variable resistance Y as shown in the figure. For the most precise measurement of X, the resistances P and Q

(1) Do not play any significant role


(2) Should be approximately equal to 2X

(3) Should be approximately equal and are small

(4) Should be very large and unequal

Answer (3)

47. Two point charges -q and +q are placed at a distance of L, as shown in the figure.

The magnitude of electric field intensity at a distance R(R >> L) varies as:

(1) $\frac{1}{B^6}$

(2) $\frac{1}{R^2}$

(3) $\frac{1}{R^3}$

(4) $\frac{1}{R^4}$

Answer (3)

48. Match List-I with List-II

	List-I		List-II
(a)	Gravitational constant (G)	(i)	[L2 T -2]
(b)	Gravitational potential energy	(ii)	[M-1L3T-2]
(c)	Gravitational potential	(iii)	[LT ⁻²]
(d)	Gravitational intensity	(iv)	[ML ² T ⁻²]

Choose the correct answer from the options given below

(1) (a) - (iv), (b) - (ii), (c) - (i), (d) - (iii)

(2) (a) - (ii), (b) - (i), (c) - (iv), (d) - (iii)

(3) (a) - (ii), (b) - (iv), (c) - (i), (d) - (iii)

(4) (a) - (ii), (b) - (iv), (c) - (iii), (d) - (i)

Answer (3)

49. A series LCR circuit with inductance 10 H, capacitance 10 μ F, resistance 50 Ω is connected to an ac source of voltage, $V = 200 \sin(100t)$ volt. If the resonant frequency of the LCR circuit is v_0 and the frequency of the ac source is v, then

(1) $v = 100 \text{ Hz}; v_0 = \frac{100}{\pi} \text{ Hz}$

(2) $v_0 = v = 50 \text{ Hz}$

(3) $v_0 = v = \frac{50}{\pi} \text{ Hz}$

(4) $v_0 = \frac{50}{\pi} \text{ Hz}, \ v = 50 \text{ Hz}$

Answer (3)

50. A ball is projected with a velocity, 10 ms⁻¹, at an angle of 60° with the vertical direction. Its speed at the highest point of its trajectory will be

(1) 10 ms⁻¹

(2) Zero

(3) $5\sqrt{3} \text{ ms}^{-1}$

(4) 5 ms⁻¹

Answer (3)

SECTION-A

- 51. The pH of the solution containing 50 mL each of 0.10 M sodium acetate and 0.01 M acetic acid is [Given pK_a of CH₃COOH = 4.57]
 - (1) 2.57
 - (2) 5.57
 - (3) 3.57
 - (4) 4.57

Answer (2)

- 52. Which one is not correct mathematical equation for Dalton's Law of partial pressure? Here p = total pressure of gaseous mixture
 - (1) $p_i = \chi_i p_i^*$,

where χ_i = mole fraction of ith gas in gaseous mixture

 p_i° = pressure of ith gas in pure state

- (2) $p = p_1 + p_2 + p_3$
- (3) $p = n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$
- (4) $p_i = \chi_i p_i$

where p_i = partial pressure of i^{th} gas χ_i = mole fraction of i^{th} gas in gaseous mixture

Answer (1)

- 53. The incorrect statement regarding enzymes is
 - (1) Enzymes are very specific for a particular reaction and substrate.
 - (2) Enzymes are biocatalysts.
 - (3) Like chemical catalysts enzymes reduce the activation energy of bio processes.
 - (4) Enzymes are polysaccharides.

Answer (4)

54. Match List-I with List-II

List-I

- (a) Li
- (4)

(b)

(c) KOH

Na

(d) Cs

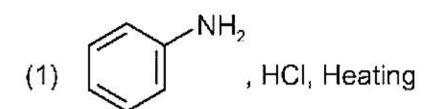
List-II

- (i) absorbent for carbon dioxide
- (ii) electrochemical cells
- (iii) coolant in fast breeder reactors
- (iv) photoelectric cell

Choose the correct answer from the options given below:

- (1) (a) (ii), (b) (iii), (c) (i), (d) (iv)
- (2) (a) (iv), (b) (i), (c) (iii), (d) (ii)
- (3) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (4) (a) (i), (b) (iii), (c) (iv), (d) (ii)

55. Given below are two statements

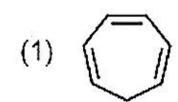

Statement I: Primary aliphatic amines react with HNO2 to give unstable diazonium salts.

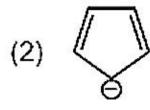
Statement II: Primary aromatic amines react with HNO₂ to form diazonium salts which are stable even above 300 K. In the light of the above statements, choose the most **appropriate** answer from the options given below

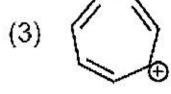
- (1) Statement I is incorrect but Statement II is correct.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.

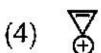
Answer (4)

56. Which of the following sequence of reactions is suitable to synthesize chlorobenzene?


- (2) Benzene, Cl₂, anhydrous FeCl₃
- (3) Phenol, NaNO2, HCI, CuCl


Answer (2)


- 57. Identify the incorrect statement from the following
 - (1) Lithium is the strongest reducing agent among the alkali metals.
 - (2) Alkali metals react with water to form their hydroxides.
 - (3) The oxidation number of K in KO₂ is +4.
 - (4) Ionisation enthalpy of alkali metals decreases from top to bottom in the group.


Answer (3)

58. Which compound amongst the following is **not** an aromatic compound?

59. At 298 K, the standard electrode potentials of Cu²⁺ / Cu, Zn²⁺ / Zn, Fe²⁺ / Fe and Ag⁺ / Ag are 0.34 V, –0.76 V, –0.44 V and 0.80 V, respectively.

On the basis of standard electrode potential, predict which of the following reaction cannot occur?

- (1) $2CuSO_4(aq) + 2Ag(s) \rightarrow 2Cu(s) + Ag_2SO_4(aq)$
- (2) $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$
- (3) $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$
- (4) $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$

Answer (1)

60. Given below are two statements

Statement I: The acidic strength of monosubstituted nitrophenol is higher than phenol because of electron withdrawing nitro group.

Statement II: *o*-nitrophenol, *m*-nitrophenol and *p*-nitrophenol will have same acidic strength as they have one nitro group attached to the phenolic ring.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is incorrect but Statement II is correct.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.

Answer (4)

- 61. Which of the following statement is not correct about diborane?
 - Both the Boron atoms are sp² hybridised.
 - (2) There are two 3-centre-2-electron bonds.
 - (3) The four terminal B-H bonds are two centre two electron bonds.
 - (4) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.

Answer (1)

62. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): In a particular point defect, an ionic solid is electrically neutral, even if few of its cations are missing from its unit cells.

Reason (R): In an ionic solid, Frenkel defect arises due to dislocation of cation from its lattice site to interstitial site, maintaining overall electrical neutrality.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

Answer (3)

63. Given below are two statements:

> Statement I: The boiling points of aldehydes and ketones are higher than hydrocarbons of comparable molecular masses because of weak molecular association in aldehydes and ketones due to dipole - dipole interactions.

> Statement II: The boiling points of aldehydes and ketones are lower than the alcohols of similar molecular masses due to the absence of H-bonding.

In the light of the above statements, choose the most appropriate answer from the given below

- Statement I is incorrect but Statement II is correct
- Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect
- Statement I is correct but Statement II is incorrect

Answer (2)

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). 64.

Assertion (A): ICI is more reactive than l2.

Reason (R): I-Cl bond is weaker than I-I bond.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) is not correct but (R) is correct
- Both (A) and (R) are correct and (R) is the correct explanation of (A).
- Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (A) is correct but (R) is not correct

Answer (2)

Match List-II with List-II. 65.

	List-I	List-II		
	(Products formed)		(Reaction of carbonyl compound with)	
(a)	Cyanohydrin	(i)	NH ₂ OH	
(b)	Acetal	(ii)	RNH₂	
(c)	Schiff's base	(iii)	alcohol	
(d)	Oxime	(iv)	HCN	
Cho	ose the correct answer from the options given be			
(1)	(a) $-$ (iv), (b) $-$ (iii), (c) $-$ (ii), (d) $-$ (i)			
(2)	(a) (iii) (b) (iv) (a) (ii) (d) (i)			

- (2) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (3) (a) (ii), (b) (iii), (c) (iv), (d) (i)
- (4) (a) (i), (b) (iii), (c) (ii), (d) (iv)

66. Match List-II with List-II.

List-I

(Hydrides)

(11) 411466)

- (a) MgH₂
- (b) GeH₄
- (c) B_2H_6
- (d) HF

List-II

(Nature)

- (i) Electron precise
- (ii) Electron deficient
- (iii) Electron rich
- (iv) lonic

Choose the correct answer from the options given below

(1) (a)
$$-$$
 (ii), (b) $-$ (iii), (c) $-$ (iv), (d) $-$ (i)

(2)
$$(a) - (iv), (b) - (i), (c) - (ii), (d) - (iii)$$

(3)
$$(a) - (iii), (b) - (i), (c) - (ii), (d) - (iv)$$

(4)
$$(a) - (i)$$
, $(b) - (ii)$, $(c) - (iv)$, $(d) - (iii)$

Answer (2)

67. Gadolinium has a low value of third ionisation enthalpy because of

- (1) high basic character
- (2) small size
- (3) high exchange enthalpy
- (4) high electronegativity

Answer (3)

68. Given below are two statements

Statement I: In the coagulation of a negative sol, the flocculating power of the three given ions is in the order $Al^{3+} > Ba^{2+} > Na^+$

Statement II: In the coagulation of a positive sol, the flocculating power of the three given salts is in the order NaCl > Na₂SO₄ > Na₃PO₄

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Statement I is incorrect but Statement II is correct.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.

List-I

(Drug class)

(a) Antacids

(b) Antihistamines

(c) Analgesics

(d) Antimicrobials

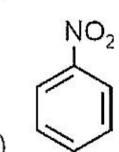
List-II

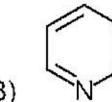
(Drug molecule)

(i) Salvarsan

(ii) Morphine

(iii) Cimetidine


(iv) Seldane


Choose the correct answer from the options given below:

Answer (3)

70. The Kjeldahl's method for the estimation of nitrogen can be used to estimate the amount of nitrogen in which one of the following compounds?

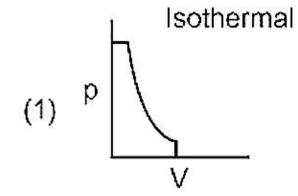
$$(1) \qquad N = N - (1)$$

NH

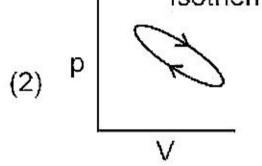
Answer (4)

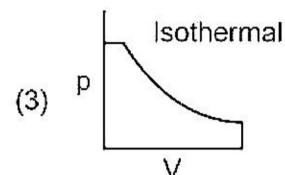
71. Choose the correct statement:

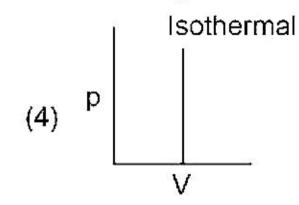
- (1) Both diamond and graphite are used as dry lubricants.
- (2) Diamond and graphite have two dimensional network.
- (3) Diamond is covalent and graphite is ionic.
- (4) Diamond is sp³ hybridised and graphite is sp² hybridized.


72. The IUPAC name of the complex-

 $[Ag(H_2O)_2][Ag(CN)_2]$ is:


- (1) diaquasilver(I) dicyanidoargentate(I)
- (2) dicyanidosilver(II) diaquaargentate(II)
- (3) diaquasilver(II) dicyanidoargentate(II)
- (4) dicyanidosilver(I) diaquaargentate(I)


Answer (1)


73. Which of the following p-V curve represents maximum work done?

Isothermal

Answer (3)

- 74. In one molal solution that contains 0.5 mole of a solute, there is
 - (1) 1000 g of solvent
 - (2) 500 mL of solvent
 - (3) 500 g of solvent
 - (4) 100 mL of solvent

Answer (3)

- Identify the incorrect statement from the following.
 - (1) The shapes of d_{xy} , d_{yz} and d_{zx} orbitals are similar to each other; and $d_{x^2-y^2}$ and d_{z^2} are similar to each other.
 - (2) All the five 5d orbitals are different in size when compared to the respective 4d orbitals.
 - (3) All the five 4d orbitals have shapes similar to the respective 3d orbitals.
 - (4) In an atom, all the five 3d orbitals are equal in energy in free state.

76. What mass of 95% pure CaCO₃ will be required to neutralise 50 mL of 0.5 M HCl solution according to the following reaction?

$$CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + CO_{2(g)} + 2H_2O_{(l)}$$

[Calculate upto second place of decimal point]

- (1) 9.50 g
- (2) 1.25 g
- (3) 1.32 g
- (4) 3.65 g

Answer (3)

- 77. Which amongst the following is incorrect statement?
 - (1) O_2^+ ion is diamagnetic
 - (2) The bond orders of O_2^- , O_2^- , O_2^- and O_2^{2-} are 2.5, 2, 1.5 and 1, respectively
 - (3) C_2 molecule has four electrons in its two degenerate π molecular orbitals
 - (4) H_2^{\dagger} ion has one electron

Answer (1)

78. $RMgX + CO_2 \xrightarrow{dry} Y \xrightarrow{H_3O'} RCOOH$

What is Y in the above reaction?

- (1) (RCOO)₂Mg
- (2) RCOO-Mg+X
- (3) R₃CO⁻Mg⁺X
- (4) RCOO-X+

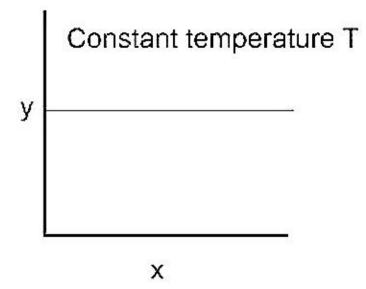
Answer (2)

79. Given below are half cell reactions:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$E_{Mn^{2+}/MnO_{4}}^{\circ} = -1.510 \text{ V}$$

$$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$$


$$E_{O_2/H_2O}^{\circ} = +1.223 \text{ V}$$

Will the permanganate ion, MnO₄ liberate O₂ from water in the presence of an acid?

- (1) No, because $E_{cell}^{\circ} = -2.733 \text{ V}$
- (2) Yes, because $E_{cell}^{\circ} = \div 0.287 \text{ V}$
- (3) No, because $E_{cell}^{\circ} = -0.287 \text{ V}$
- (4) Yes, because $E_{cell}^{\circ} = \div 2.733 \text{ V}$

Answer (2)

80. The given graph is a representation of kinetics of a reaction.

The y and x axes for zero and first order reactions, respectively are

- (1) zero order (y = rate and x = concentration), first order (y = rate and x = $t_{1/2}$)
- (2) zero order (y = concentration and x = time), first order (y = $t_{\frac{1}{2}}$ and x = concentration)
- (3) zero order (y = concentration and x = time), first order (y = rate constant and x = concentration)
- (4) zero order (y = rate and x = concentration), first order (y = $t_{\frac{1}{2}}$ and x = concentration)

Answer (4)

- 81. The incorrect statement regarding chirality is
 - (1) A racemic mixture shows zero optical rotation
 - (2) S_N1 reaction yields 1:1 mixture of both enantiomers
 - (3) The product obtained by S_N2 reaction of haloalkane having chirality at the reactive site shows inversion of configuration
 - (4) Enantiomers are superimposable mirror images on each other

Answer (4)

- 82. The IUPAC name of an element with atomic number 119 is
 - (1) ununoctium
 - (2) ununennium
 - (3) unnilennium
 - (4) unununnium

Answer (2)

- 83. Which statement regarding polymers is **not correct**?
 - (1) Thermosetting polymers are reusable
 - (2) Elastomers have polymer chains held together by weak intermolecular forces
 - (3) Fibers possess high tensile strength
 - (4) Thermoplastic polymers are capable of repeatedly softening and hardening on heating and cooling respectively

84. Given below are two statements

Statement I : The boiling points of the following hydrides of group 16 elements increases in the order $-H_2O < H_2S < H_2Se < H_2Te$

Statement II: The boiling points of these hydrides increase with increase in molar mass.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (3)

- 85. Amongst the following which one will have maximum 'lone pair lone pair' electron repulsions?
 - (1) XeF₂
 - (2) CIF₃
 - (3) IF₅
 - (4) SF₄

Answer (1)

SECTION-B

- 86. For a first order reaction A → Products, initial concentration of A is 0.1 M, which becomes 0.001 M after 5 minutes. Rate constant for the reaction in min⁻¹ is
 - (1) 0.2303
 - (2) 1.3818
 - (3) 0.9212
 - (4) 0.4606

Answer (3)

87. Which one of the following is not formed when acetone reacts with 2-pentanone in the presence of dilute NaOH followed by heating?

Answer (3)

88.		e neutral or faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of ganese in this reaction is from
	(1)	+6 to +5
	(2)	+7 to +4

Answer (2)

(4) +7 to +3

89. Compound X on reaction with O₃ followed by Zn/H₂O gives formaldehyde and 2-methyl propanal as products. The compound X is

(1) Pent-2-ene

+6 to +4

- (2) 3-Methylbut-1-ene
- (3) 2-Methylbut-1-ene
- (4) 2-Methylbut-2-ene

Answer (2)

90. $3O_2(g) \rightleftharpoons 2O_3(g)$

for the above reaction at 298 K, K_C is found to be 3.0 × 10⁻⁵⁹. If the concentration of O_2 at equilibrium is 0.040 M then concentration of O_3 in M is

- $(1) \quad 1.2 \times 10^{21}$
- (2) 4.38×10^{-32}
- (3) 1.9×10^{-63}
- (4) 2.4 × 10³¹

Answer (2)

91. If radius of second Bohr orbit of the He⁺ ion is 105.8 pm, what is the radius of third Bohr orbit of Li²⁺ ion?

- (1) **158.7** Å
- (2) 158.7 pm
- (3) 15.87 pm
- (4) 1.587 pm

Answer (2)

The pollution due to oxides of sulphur gets enhanced due to the presence of:

- (a) particulate matter
- (b) ozone
- (c) hydrocarbons
- (d) hydrogen peroxide

Choose the most appropriate answer from the options given below:

- (1) (a), (c), (d) only
- (2) (a), (d) only
- (3) (a), (b), (d) only
- (4) (b), (c), (d) only

Answer (3)

- 93. A 10.0 L flask contains 64 g of oxygen at 27°C. (Assume O₂ gas is behaving ideally). The pressure inside the flask in bar is (Given R = 0.0831 L bar K⁻¹ mol⁻¹)
 - (1) 4.9
 - (2) 2.5
 - (3) 498.6
 - (4) 49.8

Answer (1)

94. The correct IUPAC name of the following compound is

- (1) 6-bromo-4-methyl-2-chlorohexan-4-ol
- (2) 1-bromo-5-chloro-4-methylhexan-3-ol
- (3) 6-bromo-2-chloro-4-methylhexan-4-ol
- (4) 1-bromo-4-methyl-5-chlorohexan-3-ol

Answer (2)

95. Given below are two statements:

Statement I: In Lucas test, primary, secondary and tertiary alcohols are distinguished on the basis of their reactivity with conc. HCl + ZnCl₂, known as Lucas Reagent.

Statement II: Primary alcohols are most reactive and immediately produce turbidity at room temperature on reaction with Lucas Reagent.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (4)

- 96. The order of energy absorbed which is responsible for the color of complexes
 - (A) $[Ni(H_2O)_2(en)_2]^{2+}$
 - (B) $[Ni(H_2O)_4(en)]^{2+}$ and
 - (C) $[Ni(en)_3]^{2+}$

is

- (1) (B) > (A) > (C)
- (2) (A) > (B) > (C)
- (3) (C) > (B) > (A)
- (4) (C) > (A) > (B)

Answer (4)

- Opper crystallises in fcc unit cell with cell edge length of 3.608 × 10⁻⁸ cm. The density of copper is 8.92 g cm⁻³. Calculate the atomic mass of copper.
 - (1) 65 u
 - (2) 63.1 u
 - (3) 31.55 u
 - (4) 60 u

Answer (2)

98. Find the emf of the cell in which the following reaction takes place at 298 K

$$Ni(s) + 2Ag^{+}(0.001M) \rightarrow Ni^{2+}(0.001M) + 2Ag(s)$$

(Given that
$$E_{cell}^{\circ} = 10.5 \text{ V,} \frac{2.303 \text{ RT}}{F} = 0.059 \text{ at } 298 \text{ K}$$
)

- (1) 1.05 V
- (2) 1.0385 V
- (3) 1.385 V
- (4) 0.9615 V

Answer (NA)

99. Match List-II with List-II.

	List-I		List-II		
	(Ores)		(Composition)		
(a)	Haematite	(i)	Fe ₃ O ₄		
(b)	Magnetite	(ii)	ZnCO ₃		
(c)	Calamine	(iii)	Fe ₂ O ₃		
(d)	Kaolinite	(iv)	$[AI_2(OH)_4Si_2O_5]$		
Choose the correct answer from the options given below:					

- (1) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
- (2) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (3) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- (4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Answer (3)

100. The product formed from the following reaction sequence is

BOTANY

SECTION-A

- 101. Which one of the following never occurs during mitotic cell division?
 - (1) Coiling and condensation of the chromatids
 - (2) Spindle fibres attach to kinetochores of chromosomes
 - (3) Movement of centrioles towards opposite poles
 - (4) Pairing of homologous chromosomes

Answer (4)

- 102. Which one of the following statements cannot be connected to Predation?
 - (1) It is necessitated by nature to maintain the ecological balance
 - (2) It helps in maintaining species diversity in a community
 - (3) It might lead to extinction of a species
 - (4) Both the interacting species are negatively impacted

Answer (4)

- 103. Which one of the following plants does not show plasticity?
 - (1) Maize

(2) Cotton

(3) Coriander

(4) Buttercup

Answer (1)

- 104. The flowers are Zygomorphic in:
 - (a) Mustard

(b) Gulmohar

(c) Cassia

(d) Datura

(e) Chilly

Choose the correct answer from the options given below:

- (1) (c), (d), (e) Only
- (2) (a), (b), (c) Only
- (3) (b), (c) Only
- (4) (d), (e) Only

Answer (3)

- 105. Which one of the following is **not** true regarding the release of energy during ATP synthesis through chemiosmosis? It involves:
 - (1) Reduction of NADP to NADPH, on the stroma side of the membrane
 - (2) Breakdown of proton gradient
 - (3) Breakdown of electron gradient
 - (4) Movement of protons across the membrane to the stroma

Answer (3)

106. Given below are two statements : one is labelled as

Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Polymerase chain reaction is used in DNA amplification.

Reason (R):

The ampicillin resistant gene is used as a selectable marker to check transformation

In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

Answer (3)

- 107. Habitat loss and fragmentation, over exploitation, alien species invasion and co-extinction are causes for:
 - (1) Natality

(2) Population explosion

(3) Competition

(4) Biodiversity loss

Answer (4)

108. Given below are two statements:

Statement I:

The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells.

Statement II:

Mesophyll cells of C_4 plants lack RuBisCo enzyme. In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (2).

- 109. Identify the incorrect statement related to Pollination:
 - (1) Moths and butterflies are the most dominant pollinating agents among insects
 - (2) Pollination by water is quite rare in flowering plants
 - (3) Pollination by wind is more common amongst abiotic pollination
 - (4) Flowers produce foul odours to attract flies and beetles to get pollinated

Answer (1)

- 110. Hydrocolloid carrageen is obtained from:
 - (1) Phaeophyceae only

(2) Chlorophyceae and Phaeophyceae

(3) Phaeophyceae and Rhodophyceae

(4) Rhodophyceae only

		- 26 -							
	Ans	wer (4)							
	(3)	Birds	(4)	Grasshoppers					
	(1)	Monkeys	(2)	Drosophila					
117.	XO 1	type of sex determination can be found in :							
	Ans	wer (1)							
	(3)	More than 18%	(4)	About 10%					
	(1)	Less than 7%	(2)	Approximately 15%					
116.	Wha	at amount of energy is released from glucose during	ng la						
		wer (3)							
	(3)	Ulothrix – Mannitol	(4)	Porphyra – Floridian Starch					
	(1)	Volvox – Starch	(2)	Ectocarpus – Fucoxanthin					
115.	20.2525	ch of the following is incorrectly matched?	,						
1 920223		wer (NA) No option is correct							
	(3)	(b), (c), (d) and (e) Only	(4)	(a), (b), (c) and (d) Only					
	(1)	(a), (c), (d) and (e) Only	(2)	(a), (b) and (d) Only					
	20200	ose the correct answer from the options given be	y						
	(e)								
	(d)	The vascular bundles of dicotyledonous stem po		ža like terminatina ir					
	(c) In open vascular bundles, cambium is present in between xylem and phloem								
	(b)	Conjoint closed vascular bundles do not possess							
	(a)	radii		rranged in an alternate manner along the different					
114.	9 20	d the following statements about the vascular bur							
		wer (3)	97014						
	(4)	help overcome apical dominance							
	(3)	promote root growth and roothair formation to inc	creas	se the absorption surface					
	(2)	speed up the malting process							
	(1)	kill dicotyledonous weeds in the fields							
113.		gaseous plant growth regulator is used in plants t	to:						
		wer (4)							
	(4)	The presence of chromogenic substrate gives bl	ue co	ploured DNA bands on the gel.					
	(3)	The separated DNA fragments are stained by us							
(2) The process of extraction of separated DNA strands from gel is called elution.									
	(1)	Bright orange coloured bands of DNA can be observed in the gel when exposed to UV light.							
112.	Whi	ich one of the following statement is not true regarding gel electrophoresis technique?							
	Ans	wer (4)							
	(3)	Bivalent	(4)	Sites at which crossing over occurs					
	(1)	Terminalization	(2)	Synaptonemal complex					

111. The appearance of recombination nodules on homologous chromosomes during meiosis characterizes :

- 118. What is the net gain of ATP when each molecule of glucose is converted to two molecules of pyruvic acid?
 - (1) Eight

(2) Four

(3) Six

(4) Two

Answer (4)

119. Match List-I with List-II

	List-I		List-II
(a)	Manganese	(i)	Activates the enzyme catalase
(b)	Magnesium	(ii)	Required for pollen germination
(c)	Boron	(iii)	Activates enzymes of respiration
(d)	Iron	(iv)	Functions in splitting of water during photosynthesis

Choose the correct answer from the options given below:

- (1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Answer (3)

- 120. "Girdling Experiment" was performed by Plant Physiologists to identify the plant tissue through which:
 - (1) osmosis is observed
 - (2) water is transported
 - (3) food is transported
 - (4) for both water and food transportation

Answer (3)

- 121. Which of the following is **not** a method of ex situ conservation?
 - (1) Cryopreservation
 - (2) In vitro fertilization
 - (3) National Parks
 - (4) Micropropagation

Answer (3)

122. Given below are two statements:

Statement I: Decomposition is a process in which the detritus is degraded into simpler substances by microbes.

Statement II: Decomposition is faster if the detritus is rich in lignin and chitin.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

	(a)	Euchromatin is loosely packed chromatin							
	(b)	Heterochromatin is transcriptionally active							
	(c)	Histone octomer is wrapped by negatively char-	ged D	NA in nucleosome					
	(d)	Histones are rich in lysine and arginine	ones are rich in lysine and arginine						
	(e)	A typical nucleosome contains 400 bp of DNA helix							
	Cho	ose the correct answer from the options given be	: wole						
	(1)	(a), (c), (e) Only	(2)	(b), (d), (e) Only					
	(3)	(a), (c), (d) Only	(4)	(b), (e) Only					
	Ans	swer (3)							
124.	lder	ntify the correct set of statements :							
	(a)	The leaflets are modified into pointed hard thorn	ns in	Citrus and Bougainvillea					
	(b)	Axillary buds form slender and spirally coiled te	ndrils	in cucumber and pumpkin					
	(c)	Stem is flattened and fleshy in Opuntia and mo-	dified	to perform the function of leaves					
	(d)	Rhizophora shows vertically upward growing ro	ots th	at help to get oxygen for respiration					
	(e)	Subaerially growing stems in grasses and strav	vberry	help in vegetative propagation					
	Cho	ose the correct answer from the options given I	pelow	:					
	(1)	(a), (b), (d) and (e) Only	(2)	(b) and (c) Only					
	(3)	(a) and (d) Only	(4)	(b), (c), (d) and (e) Only					
	Ans	swer (4)							
125.	Whi	ch one of the following produces nitrogen fixing r	nodule	es on the roots of Alnus?					
	(1)	Beijerinckia	(2)	Rhizobium					
	(3)	Frankia	(4)	Rhodospirillum					
	Ans	swer (3)	`~'						
126.	Whi	ch one of the following plants shows vexillary ae:	stivati	on and diadelphous stamens?					
	(1)	Solanum nigrum	(2)	Colchicum autumnale					
	(3)	Pisum sativum	(4)	Allium cepa					
	Ans	swer (3)							
127.	Give	en below are two statements :							
	Stat	tement I :							
	Clei	stogamous flowers are invariably autogamous							
	Stat	tement II :							
	Clei	stogamy is disadvantageous as there is no chan	ce for	cross pollination					
	In th	ne light of the above statements, choose the corr	ect a	nswer from the options given below:					
	(1)	Statement I is incorrect but Statement II is cor	rect						
	(2)	Both Statement I and Statement II are correct	oth Statement I and Statement II are correct						
	(3)	Both Statement I and Statement II are incorred	et						
	(4)	Statement I is correct but Statement II is incor	rect						
	Ans	swer (2)							

123. Read the following statements and choose the set of correct statements :

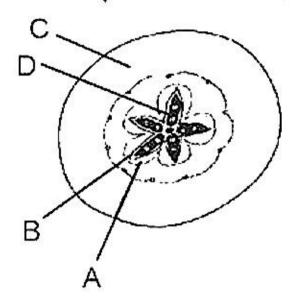
128.	The process of translation of mRNA to proteins begins as soon as :					
	(1)	The tRNA is activated and the larger subunit of r	riboso	ome encounters mRNA		
	(2)	The small subunit of ribosome encounters mRN.	Α			
	(3)	The larger subunit of ribosome encounters mRN	ΙΑ			
	(4)	Both the subunits join together to bind with mRN	IA			
	Ans	wer (2)				
129.	The	device which can remove particulate matter pres	ent ir	the exhaust from a thermal power plant is :		
	(1)	Catalytic Convertor	(2)	STP		
	(3)	Incinerator	(4)	Electrostatic Precipitator		
	Ans	wer (4)				
130.	Exo	skeleton of arthropods is composed of :				
	(1)	Glucosamine	(2)	Cutin		
	(3)	Cellulose	(4)	Chitin		
	Ans	wer (4)				
131.	DNA	A polymorphism forms the basis of :				
	(1)	Translation				
	(2)	Genetic mapping				
	(3)	DNA finger printing				
	(4)	Both genetic mapping and DNA finger printing				
	Ans	wer (4)				
132.	In ol	d trees the greater part of secondary xylem is dai	rk bro	own and resistant to insect attack due to:		
	(a)	secretion of secondary metabolities and their de	posit	ion in the lumen of vessels.		
	(b)	deposition of organic compounds like tannins an	d res	sins in the central layers of stem.		
	(c)	deposition of suberin and aromatic substances in	n the	outer layer of stem.		
	(d)	deposition of tannins, gum, resin and aromatic s	ubsta	ances in the peripheral layers of stem.		
	(e)	presence of parenchyma cells, functionally active	e xyle	em elements and essential oils.		
	Cho	ose the correct answer from the options given be	elow:			
	(1)	(b) and (d) Only	(2)	(a) and (b) Only		
	(3)	(c) and (d) Only	(4)	(d) and (e) Only		
	Ans	wer (2)				
133.	Whi	ch of the following is not observed during apoplas	stic p	athway ?		
	(1)	Apoplast is continuous and does not provide any				
	(2)	Movement of water occurs through intercellular s				
	(3)	The movement does not involve crossing of cell	26			
	(4)	The movement is aided by cytoplasmic streamin	ıg			
	Ans	wer (4)				

	Given below are two statements:							
	Stat	tement I :						
	Mendel studied seven pairs of contrasting traits in pea plants and proposed the Laws of Inheritance.							
	Statement II:							
		en characters examined by Mend our, pod shape and colour, flower	WWW. 12 12 12 12	on pea plants were seed shape and colour, flower eight.				
	In the light of the above statements, choose the correct answer from the options given below :							
	(1)	Statement I is incorrect but Star	tement II is correct					
	(2)	Both Statement I and Statemen	nt II are correct					
	(3)	Both Statement I and Statemen	nt II are incorrect					
	(4)	Statement I is correct but State	ment II is incorrect					
	Ans	swer (2)						
135.	phy			ent years. Application of which of the following hormone is known to produce female flowers in				
	(1)	Cytokinin	(2)	ABA				
	(3)	Gibberellin	(4)	Ethylene				
	Ans	swer (4)						
			SECTION	I-B				
136.	is a		and (0) for neutral in	sign is assigned for beneficial interaction, (–) sign nteraction. Which of the following interactions can ifies involved in the interaction?				
136.	is a	ssigned for detrimental interaction	and (0) for neutral in	nteraction. Which of the following interactions can				
136.	is as	ssigned for detrimental interaction assigned (+) for one specifies and	and (0) for neutral in (-) for another spec	nteraction. Which of the following interactions can ifies involved in the interaction?				
136.	is as be a (1) (3)	ssigned for detrimental interaction assigned (+) for one specifies and Competition	and (0) for neutral in (–) for another spec (2)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation				
136.	is as be a (1) (3) Ans	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim wer (2) geneticist uses the blind approx	and (0) for neutral in (-) for another spec (2) (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation				
	is as be a (1) (3) Ans	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim wer (2) geneticist uses the blind approx	and (0) for neutral in (-) for another spec (2) (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by				
	is as be a (1) (3) Ans If a assi	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim wer (2) geneticist uses the blind approagnment of function to different se	and (0) for neutral in (-) for another spec (2) (2) (4) ach for sequencing agments, the methodo	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation				
	is as be a (1) (3) Ans If a assi (1) (3)	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim wer (2) geneticist uses the blind approagnment of function to different se Bioinformatics	and (0) for neutral in (-) for another spec (2) ach for sequencing (4) gments, the methodo (2)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation				
	is as be a (1) (3) Ans (1) (3) (3) Ans	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim swer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping swer (2)	and (0) for neutral in (-) for another spec (2) ach for sequencing gments, the methodo (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags				
137.	is as be a (1) (3) Ans (1) (3) (3) Ans	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim swer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping	and (0) for neutral in (-) for another spec (2) ach for sequencing gments, the methodo (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags				
137.	is as be a (1) (3) Ans (1) (3) Ans Whi (1)	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim wer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping wer (2) ch of the following occurs due to Thalessemia	and (0) for neutral in (-) for another spec (2) ach for sequencing gments, the methodo (2) (4) the presence of autom (2)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags some linked dominant trait? Sickle cell anaemia				
137.	is as be a (1) (3) Ans (1) (3) Ans (1) (3) (3) (3)	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim swer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping swer (2) ch of the following occurs due to Thalessemia Myotonic dystrophy	and (0) for neutral in (-) for another specifical (2) ach for sequencing gments, the methodo (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags				
137.	is as be a (1) (3) Ans (1) (3) Ans (1) (3) Ans (1) (3) Ans (1)	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim swer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping swer (2) ch of the following occurs due to Thalessemia Myotonic dystrophy swer (3)	and (0) for neutral in (-) for another spec (2) ach for sequencing gments, the methodo (2) (4) the presence of automore (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags some linked dominant trait? Sickle cell anaemia Haemophilia				
137.	is as be a (1) (3) Ans (1) (4) Ans (1) (4) Ans (1) (5) Ans (1) (6)	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim swer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping swer (2) ch of the following occurs due to Thalessemia Myotonic dystrophy swer (3) ch one of the following will accele	and (0) for neutral in (-) for another specific (2) (4) ach for sequencing gments, the methodo (2) (4) the presence of automore (2) (4)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags some linked dominant trait? Sickle cell anaemia Haemophilia				
137.	is as be a (1) (3) Ans (1) (3)	ssigned for detrimental interaction assigned (+) for one specifies and Competition Amensalim swer (2) geneticist uses the blind approagnment of function to different se Bioinformatics Gene mapping swer (2) ch of the following occurs due to Thalessemia Myotonic dystrophy swer (3)	and (0) for neutral in (-) for another spec (2) (4) ach for sequencing gments, the methodo (2) (4) the presence of automore (2) (4) erate phosphorus cyclerate phosphorus cyclerate (2)	nteraction. Which of the following interactions can ifies involved in the interaction? Predation Commensalism the whole genome of an organism, followed by plogy adopted by him is called as: Sequence annotation Expressed sequence tags some linked dominant trait? Sickle cell anaemia Haemophilia				

- 140. Read the following statements on lipids and find out correct set of statements:
 - (a) Lecithin found in the plasma membrane is a glycolipid
 - (b) Saturated fatty acids possess one or more c = c bonds
 - (c) Gingely oil has lower melting point, hence remains as oil in winter
 - (d) Lipids are generally insoluble in water but soluble in some organic solvents
 - (e) When fatty acid is esterified with glycerol, monoglycerides are formed

Choose the correct answer from the option given below:

(1) (a), (b) and (d) only


(2) (a), (b) and (c) only

(3) (a), (d) and (e) only

(4) (c), (d) and (e) only

Answer (4)

141. Which part of the fruit, labelled in the given figure makes it a false fruit?

(1) $D \rightarrow Seed$

(2) A → Mesocarp

(3) $B \rightarrow Endocarp$

(4) C → Thalamus

Answer (4)

- 142. In the following palindromic base sequences of DNA, which one can be cut easily by particular restriction enzyme?
 - (1) 5'GTATTC3'; 3'CATAAG5'
 - (2) 5'GATACT3'; 3'CTATGA5'
 - (3) 5'GAATTC3'; 3'CTTAAG5'
 - (4) 5'CTCAGT3'; 3'GAGTCA5'

Answer (3)

143. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Mendel's law of Independent assortment does not hold good for the genes that are located closely on the same chromosome.

Reason (R): Closely located genes assort independently.

In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

- 144. The entire fleet of buses in Delhi were converted to CNG from diesel. In reference to this, which one of the following statements is false?
 - (1) It cannot be adulterated like diesel
 - (2) CNG burns more efficiently than diesel
 - (3) The same diesel engine is used in CNG buses making the cost of conversion low
 - (4) It is cheaper than diesel

Answer (3)

- 145. What is the role of large bundle sheath cells found around the vascular bundles in C4 plants?
 - (1) To protect the vascular tissue from high light intensity
 - (2) To provide the site for photorespiratory pathway
 - (3) To increase the number of chloroplast for the operation of Calvin cycle
 - (4) To enable the plant to tolerate high temperature

Answer (3)

- 146. Transposons can be used during which one of the following?
 - (1) Gene sequencing

(2) Polymerase Chain Reaction

(3) Gene Silencing

(4) Autoradiography

Answer (3)

147. Match the plant with the kind of life cycle it exhibits:

	List-I		List-II
(a)	Spirogyra	(i)	Dominant diploid sporophyte vascular plant, with highly reduced male or female gametophyte
(b)	Fern	(ii)	Dominant haploid free-living gametophyte
(c)	Funaria	(iii)	Dominant diploid sporophyte alternating with reduced gametophyte called prothallus
(d)	Cycas	(iv)	Dominant haploid leafy gametophyte alternating with partially dependent multicellular sporophyte

Choose the correct answer from the options given below:

- (1) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- (2) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (3) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

(4) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

Answer (3)

- 148. Addition of more solutes in a given solution will:
 - (1) not affect the water potential at all
 - (2) raise its water potential
 - (3) lower its water potential
 - (4) make its water potential zero

Answer (3)

- The anatomy of springwood shows some peculiar features. Identify the **correct** set of statements about springwood.
 - (a) It is also called as the earlywood
 - (b) In spring season cambium produces xylem elements with narrow vessels
 - (c) It is lighter in colour
 - (d) The springwood along with autumnwood shows alternate concentric rings forming annual rings
 - (e) It has lower density

Choose the correct answer from the options given below:

- (1) (c), (d) and (e) Only
- (2) (a), (b), (d) and (e) Only
- (3) (a), (c), (d) and (e) Only
- (4) (a), (b) and (d) Only

Answer (3)

150. Match List-I with List-II.

	List-I		List-II
(a)	Metacentric chromosome	(i)	Centromere situated close to the end forming one extremely short and one very long arms
(b)	Acrocentric chromosome	(ii)	Centromere at the terminal end
(c)	Submetacentric	(iii)	Centromere in the middle forming two equal arms of chromosomes
(d)	Telocentric chromosome	(iv)	Centromere slightly away from the middle forming one shorter arm and one longer arm

Choose the correct answer from the options given below:

- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (3) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
- (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

Answer (2)

ZOOLOGY

SECTION-A

15 1.	Under normal physiological conditions in human be ml of O ₂ to the tissues.	eing	g every 100 ml of oxygenated blood can deliver
	(1) 10 ml	(2)) 2 ml
	(3) 5 ml	(4)) 4 ml
	Answer (3)		
152.	Nitrogenous waste is excreted in the form of pellet or	past	ste by:
	(1) Pavo		
	(2) Ornithorhynchus		
	(3) Salamandra		
	(4) Hippocampus		
	Answer (1)		
153.	Which of the following is present between the adjacen	nt bo	ones of the vertebral column?
	(1) Smooth muscle	(2)) Intercalated discs
	(3) Cartilage	(4)) Areolar tissue
	Answer (3)		
154.	In-situ conservation refers to:		
	(1) Conserve only extinct species	(2)) Protect and conserve the whole ecosystem
	(3) Conserve only high-risk species	(4)) Conserve only endangered species
	Answer (2)		
155.	Given below are two statements:		
	Statement I:		
	Autoimmune disorder is a condition where body def bodies.	fense	se mechanism recognizes its own cells as foreign
	Statement II:		
	Rheumatoid arthritis is a condition where body does in	not a	attack self cells.
	In the light of the above statements, choose the mos	t app	propriate answer from the options given below:
	(1) Statement I is incorrect but Statement II is correct	ect	
	(2) Both Statement I and Statement II are correct		
	(3) Both Statement I and Statement II are incorrect	t	
	(4) Statement I is correct but Statement II is incorre	ect	
	Answer (4)		
156.	Which of the following is not the function of conducting	ng pa	art of respiratory system?
	(1) Provides surface for diffusion of O ₂ and CO ₂		
	(2) It clears inhaled air from foreign particles		
	(3) Inhaled air is humidified		
	(4) Temperature of inhaled air is brought to body te	mpe	erature
	Answer (1)		

157. Given below are two statements:

Statement I:

The coagulum is formed of network of threads called thrombins.

Statement II:

Spleen is the graveyard of erythrocytes.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (1)

158. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): All vertebrates are chordates but all chordates are not vertebrates.

Reason (R): Notochord is replaced by vertebral column in the adult vertebrates.

In the light of the above statements, choose the most appropriate answer from the option given below :

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

Answer (2)

159. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Osteoporosis is characterised by decreased bone mass and increased chance of fractures.

Reason (R):

Common cause of osteoporosis is increased levels of estrogen.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

Answer (4)

160. Given below are two statements:

Statement I: Mycoplasma can pass through less than 1 micron filter size.

Statement II: Mycoplasma are bacteria with cell wall.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

161.		hydration reaction links two glucose molecules to what is the formula for maltose?	proc	duct maltose. If the formula for glucose is C ₆ H ₁₂ O ₆			
	(1)	C ₁₂ H ₂₄ O ₁₁					
	(2)	C ₁₂ H ₂₀ O ₁₀					
	(3)	C ₁₂ H ₂₄ O ₁₂					
	(4)	C ₁₂ H ₂₂ O ₁₁					
	Ans	wer (4)					
162.	Reg	arding Meiosis, which of the statements is incorre	ect?				
	(1)	Four haploid cells are formed at the end of Meios	sis-II				
	(2)	There are two stages in Meiosis, Meiosis-I and II					
	(3)	DNA replication occurs in S phase of Meiosis-II					
	(4)	Pairing of homologous chromosomes and recom	bina	tion occurs in Meiosis-I			
	Ans	wer (3)					
163.		ural selection where more individuals acquire spe e, leads to	ecific	character value other than the mean character			
	(1)	Random change					
	(2)	Stabilising change					
	(3)	Directional change					
	(4)	Disruptive change					
	Ans	wer (3)					
164.		ene therapy of Adenosine Deaminase (ADA) of etically engineered lymphocytes because :	defic	iency, the patient requires periodic infusion of			
	(1)	Genetically engineered lymphocytes are not imm	orta	l cells.			
	(2)	Retroviral vector is introduced into these lympho-	cyte:	S.			
	(3)	Gene isolated from marrow cells producing ADA	is in	troduced into cells at embryonic stages			
	(4)	Lymphocytes from patient's blood are grown in c	ultur	e, outside the body.			
	Ans	wer (1)					
165.	If '8'	Drosophila in a laboratory population of '80' die individuals per Drosophila per week.	ed dı	uring a week, the death rate in the population is			
	(1)	zero	(2)	0.1			
	(3)	10	(4)	1.0			
	Ans	wer (2)					
166.		ne taxonomic categories which hierarchical arra	inge	ment in ascending order is correct in case of			
	(1)	Kingdom, Order, Phylum, Class, Family, Genus,	Spe	cies			
	(2)	Kingdom, Phylum, Class, Order, Family, Genus,	Spe	cies			
	(3)	Kingdom, Class, Phylum, Family, Order, Genus,	Spe	cies			
	(4)	Kingdom, Order, Class, Phylum, Family, Genus,	Spe	cies			
	Answer (2*)						

167. Given below are two statements:

Statement I:

Restriction endonucleases recognise specific sequence to cut DNA known as palindromic nucleotide sequence.

Statement II:

Restriction endonucleases cut the DNA strand a little away from the centre of the palindromic site.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (2)

- 168. Breeding crops with higher levels of vitamins and minerals or higher proteins and healthier fats is called:
 - (1) Bio-accumulation

(2) Bio-magnification

(3) Bio-remediation

(4) Bio-fortification

Answer (4)

- 169. Identify the microorganism which is responsible for the production of an immunosuppressive molecule cyclosporin A:
 - (1) Streptococcus cerevisiae

(2) Trichoderma polysporum

(3) Clostridium butylicum

(4) Aspergillus niger

Answer (2)

- 170. Which of the following is a correct match for disease and its symptoms?
 - (1) Muscular dystrophy An auto immune disorder causing progressive degeneration of skeletal muscle
 - (2) Arthritis Inflammed joints
 - (3) Tetany High Ca²⁺ level causing rapid spasms.
 - (4) Myasthenia gravis Genetic disorder resulting in weakening and paralysis of skeletal muscle

Answer (2)

- 171. Which of the following statements with respect to Endoplasmic Reticulum is incorrect?
 - (1) SER are the sites for lipid synthesis

(2) RER has ribosomes attached to ER

(3) SER is devoid of ribosomes

(4) In prokaryotes only RER are present

Answer (4)

172. Given below are two statements:

Statement I:

The release of sperms into the seminiferous tubules is called spermiation.

Statement II:

Spermiogenesis is the process of formation of sperms from spermatogonia.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

173.	3. Identify the asexual reproductive structure associated with <i>Penicillium</i> :								
	(1)	Buds	(2)	Zoospores					
	(3)	Conidia	(4)	Gemmules					
	Ans	wer (3)							
174.	In an	not bind the inducer molecule. If growth medium							
	(1)	RNA polymerase will bind the promoter region	(2)	Only z gene will get transcribed					
	(3)	z, y, a genes will be transcribed	(4)	z, y, a genes will not be translated					
	Ans	wer (4)							
175.	Teg	mina in cockroach, arises from							
	(1)	Prothorax and Mesothorax	(2)	Prothorax					
	(3)	Mesothorax	(4)	Metathorax					
	Ans	wer (3)							
176.	In w	hich of the following animals, digestive tract has a	additi	onal chambers like crop and gizzard?					
	(1)	Pavo, Psittacula, Corvus	(2)	Corvus, Columba, Chameleon					
	(3)	Bufo, Balaenoptera, Bangarus	(4)	Catla, Columba, Crocodilus					
	Ans	wer (1)							
177.	Whi	n of the following statements are true for spermatogenesis but do not hold true for Oogenesis?							
	(a)	It results in the formation of haploid gametes							
	(b)	Differentiation of gamete occurs after the completion of meiosis							
	(c)	Meiosis occurs continuously in a mitotically dividing stem cell population							
	(d)	It is controlled by the Luteinising hormone (LH) and Follicle Stimulating Hormone (FSH) secreted by the anterior pituitary							
	(e)	It is initiated at puberty							
	Cho	ose the most appropriate answer from the option	s give	en below:					
	(1)	(b), (c) and (e) only	(2)	(c) and (e) only					
	(3)	(b) and (c) only	(4)	(b), (d) and (e) only					
	Ans	wer (1)							
178.	Give	en below are two statements :							
	Stat	Statement I :							
	Fatt	atty acids and glycerols cannot be absorbed into the blood.							
	Stat	tement II :							
	Specialized lymphatic capillaries called lacteals carry chylomicrons into lymphatic vessels and ultimate the blood.								
In the light of the above statements, choose the most appropriate answer from the options give									
	(1)	Statement I is incorrect but Statement II is corr	ect						
	(2)	Both Statement I and Statement II are correct							
	(3)	Both Statement I and Statement II are incorrect	:t						
	(4)	Statement I is correct but Statement II is incorr	ect						
	Answer (2)								

179.	Lipp	e's loop is a type of contraceptive used as:		
	(1)	Copper releasing IUD	(2)	Cervical barrier
	(3)	Vault barrier	(4)	Non-Medicated IUD
	Ans	swer (4)		
180.	Whi	ch of the following functions is not performed by	secre	etions from salivary glands?
	(1)	Digestion of disaccharides	(2)	Control bacterial population in mouth
	(3)	Digestion of complex carbohydrates	(4)	Lubrication of oral cavity
	Ans	swer (1)		
181.	Whi	ch of the following is not a connective tissue?		
	(1)	Neuroglia	(2)	Blood
	(3)	Adipose tissue	(4)	Cartilage
	Ans	swer (1)		
182.	Det	ritivores breakdown detritus into smaller particles.	. This	process is called:
	(1)	Decomposition	(2)	Catabolism
	(3)	Fragmentation	(4)	Humification
400		swer (3)		
183.	202 VI	ect the incorrect statement with reference to mito	SIS:	
	(1)	Splitting of centromere occurs at anaphase	. In	
	(2)	All the chromosomes lie at the equator at metap		
	(3) (4)	Spindle fibres attach to centromere of chromoso Chromosomes decondense at telophase	JI II CS	
	` '	swer (3)		
184.			مطالة	the approximate number of been paire?
704.		e length of a DNA molecule is 1.1 metres, what w		THE COST OF THE CO
	(1)	6.6 × 10 ⁶ bp	(2)	3.3 × 10 ⁹ bp
	(3)	Policin (see	(4)	3.3 × 10 ⁶ bp
		swer (2)		
185.	12002 200	which stage of life the oogenesis process is initiate		
	(1)	Adult	(2)	Puberty
	(3)	Embryonic development stage	(4)	Birth
	Ans	swer (3)		
		SECTIO	N-B	
186.	Whi	ch of the following is not a desirable feature of a	clonii	ng vector?
	(1)	Presence of two or more recognition sites		
	(2)	Presence of origin of replication		
	(3)	Presence of a marker gene		
	(4)	Presence of single restriction enzyme site		

- 187. Select the incorrect statement regarding synapses:
 - (1) Impulse transmission across a chemical synapse is always faster than that across an electrical synapse.
 - (2) The membranes of presynaptic and postsynaptic neurons are in close proximity in an electrical synapse.
 - (3) Electrical current can flow directly from one neuron into the other across the electrical synapse.
 - (4) Chemical synapses use neurotransmitters

Answer (1)

188. Statements related to human Insulin are given below.

Which statement(s) is/are correct about genetically engineered Insulin?

- (a) Pro-hormone insulin contain extra stretch of C-peptide
- (b) A-peptide and B-peptide chains of insulin were produced separately in E.coli, extracted and combined by creating disulphide bond between them.
- (c) Insulin used for treating Diabetes was extracted from Cattles and Pigs.
- (d) Pro-hormone Insulin needs to be processed for converting into a mature and functional hormone.
- (e) Some patients develop allergic reactions to the foreign insulin.

Choose the most appropriate answer from the options given below:

- (1) (c), (d) and (e) only
- (2) (a), (b) and (d) only
- (3) (b) only
- (4) (c) and (d) only

Answer (3)

- 189. Which of the following are **not** the effects of Parathyroid hormone?
 - (a) Stimulates the process of bone resorption
 - (b) Decreases Ca2+ level in blood
 - (c) Reabsorption of Ca2+ by renal tubules
 - (d) Decreases the absorption of Ca2+ from digested food
 - (e) Increases metabolism of carbohydrates

Choose the most appropriate answer from the options given below:

- (1) (b) and (c) only
- (2) (a) and (c) only
- (3) (b), (d) and (e) only
- (4) (a) and (e) only

Answer (3)

- 190. Which of the following statements is not true?
 - (1) Flippers of penguins and dolphins are a pair of homologous organs
 - (2) Analogous structures are a result of convergent evolution
 - (3) Sweet potato and potato is an example of analogy
 - (4) Homology indicates common ancestry

- 191. Which one of the following statements is correct?
 - (1) Increased ventricular pressure causes closing of the semilunar valves.
 - (2) The atrio-ventricular node (AVN) generates an action potential to stimulate atrial contraction
 - (3) The tricuspid and the bicuspid valves open due to the pressure exerted by the simultaneous contraction of the atria
 - (4) Blood moves freely from atrium to the ventricle during joint diastole.

Answer (4)

192. Match List-I with List-II

	List-l (Biological Molecules)		List-II (Biological functions)
(a)	Glycogen	(i)	Hormone
(b)	Globulin	(ii)	Biocatalyst
(c)	Steroids	(iii)	Antibody
(d)	Thrombin	(iv)	Storage product

Choose the correct answer from the options given below:

- (1) (a) (iv), (b) (iii), (c) (i), (d) (ii)
- (2) (a) (iii), (b) (ii), (c) (iv), (d) (i)
- (3) (a) (iv), (b) (ii), (c) (i), (d) (iii)
- (4) (a) (ii), (b) (iv), (c) (iii), (d) (i)

Answer (1)

- 193. Select the **incorrect** statement with respect to acquired immunity.
 - (1) Acquired immunity is non-specific type of defense present at the time of birth.
 - (2) Primary response is produced when our body encounters a pathogen for the first time.
 - (3) Anamnestic response is elicited on subsequent encounters with the same pathogen.
 - (4) Anamnestic response is due to memory of first encounter.

Answer (1)

- 194. Ten *E.coli* cells with ¹⁵N dsDNA are incubated in medium containing ¹⁴N nucleotide. After 60 minutes, how many *E.coli* cells will have DNA totally free from ¹⁵N?
 - (1) 80 cells

(2) 20 cells

(3) 40 cells

(4) 60 cells

Answer (4)

- 195. Which of the following is a correct statement?
 - (1) Mycoplasma have DNA, ribosome and cell wall.
 - (2) Cyanobacteria are a group of autotrophic organisms classified under kingdom Monera.
 - (3) Bacteria are exclusively heterotrophic organisms.
 - (4) Slime moulds are saprophytic organisms classified under Kingdom Monera.

Answer (2)

- 196. The recombination frequency between the genes a & c is 5%, b & c is 15%, b & d is 9%, a & b is 20%, c & d is 24% and a & d is 29%. What will be the sequence of these genes on a linear chromosome?
 - (1) a, c, b, d

(2) a, d, b, c

(3) d, b, a, c

(4) a, b, c, d

Answer (1)

197. Match List-I with List-II with respect to methods of Contraception and their respective actions.

	List-l		List-II
(a)	Diaphragms	(i)	Inhibit ovulation and Implantation
(b)	Contraceptive Pills	(ii)	Increase phagocytosis of sperm within Uterus
(c)	Intra Uterine Devices	(iii)	Absence of Menstrual cycle and ovulation following parturition
(d)	Lactational Amenorrhea	(iv)	They cover the cervix blocking the entry of sperms

Choose the correct answer from the options given below:

Answer (3)

198. Match List-I with List-II

	List-l		List-II
(a)	Bronchioles	(i)	Dense Regular Connective Tissue
(b)	Goblet Cell	(ii)	Loose Connective Tissue
(c)	Tendons	(iii)	Glandular Tissue
(d)	Adipose Tissue	(iv)	Ciliated Epithelium

Choose the correct answer from the options given below:

Answer (2)

- 199. If a colour blind female marries a man whose mother was also colour blind, what are the chances of her progeny having colour blindness?
 - (1) 100%

(2) 25%

(3) 50%

(4) 75%

200.	Given	below	are two	statements
LUU.	CHACH	DOIDYY	aic treo	Statements

Statements I:

In a scrubber the exhaust from the thermal plant is passed through the electric wires to charge the dust particles.

Statement II:

Particulate matter (PM 2.5) cannot be removed by scrubber but can be removed by an electrostatic precipitator.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect