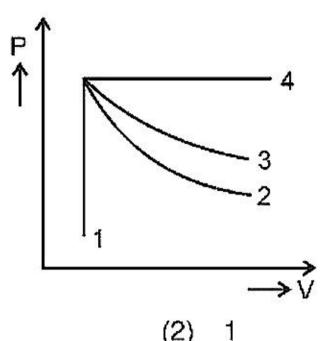
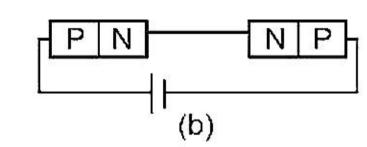
- 1. When two monochromatic lights of frequency, v and $\frac{v}{2}$ are incident on a photoelectric metal, their stopping potential becomes $\frac{V_s}{2}$ and V_s respectively. The threshold frequency for this metal is
 - (1) $\frac{3}{2}v$

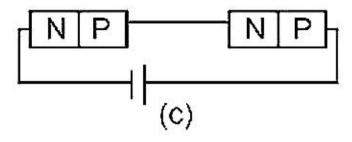

(2) 2v

(3) 3v

 $(4) \quad \frac{2}{3}v$

Answer (1*)


2. An ideal gas undergoes four different processes from the same initial state as shown in the figure below. Those processes are adiabatic, isothermal, isobaric and isochoric. The curve which represents the adiabatic process among 1, 2, 3 and 4 is



- (1) 4
- (3) 2

(2) 1(4) 3

- Answer (3)
- 3. PN PN-

In the given circuits (a), (b) and (c), the potential drop across the two p-n junctions are equal in

- (1) Both circuits (a) and (c)
- (2) Circuit (a) only
- (3) Circuit (b) only
- (4) Circuit (c) only

4. When light propagates through a material medium of relative permittivity ε_r and relative permeability μ_r , the velocity of light, ν is given by (*c*-velocity of light in vacuum)

$$(1) \quad v = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$$

$$(2) \quad v = c$$

(3)
$$v = \sqrt{\frac{\mu_r}{\varepsilon_r}}$$

$$(4) V = \sqrt{\frac{\varepsilon_r}{\mu_r}}$$

Answer (1)

5. Plane angle and solid angle have

(1) Both units and dimensions

(2) Units but no dimensions

(3) Dimensions but no units

(4) No units and no dimensions

Answer (2)

6. The angle between the electric lines of force and the equipotential surface is

(1) 180°

(2) 0°

(3) 45°

(4) 90°

Answer (4)

7. In a Young's double slit experiment, a student observes 8 fringes in a certain segment of screen when a monochromatic light of 600 nm wavelength is used. If the wavelength of light is changed to 400 nm, then the number of fringes he would observe in the same region of the screen is

(1) 12

(2) 6

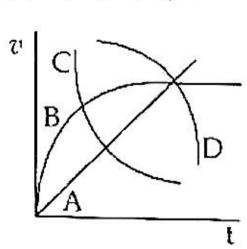
(3) 8

(4) 9

Answer (1)

8. If a soap bubble expands, the pressure inside the bubble

(1) Is equal to the atmospheric pressure


(2) Decreases

(3) Increases

(4) Remains the same

Answer (2)

9. A spherical ball is dropped in a long column of a highly viscous liquid. The curve in the graph shown, which represents the speed of the ball (v) as a function of time (t) is

(1) D

(2) A

(3) B

(4) C

Answer (3)

10. Given below are two statements

Statement I: Biot-Savart's law gives us the expression for the magnetic field strength of an infinitesimal current element (Idl) of a current carrying conductor only.

Statement II: Biot-Savart's law is analogous to Coulomb's inverse square law of charge q, with the former being related to the field produced by a scalar source, IdI while the latter being produced by a vector source, q. In light of above statements choose the most appropriate answer from the options given below

- (1) Statement I is incorrect and Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct and Statement II is incorrect

Answer (4)

- 11. As the temperature increases, the electrical resistance
 - (1) Decreases for conductors but increases for semiconductors
 - (2) Increases for both conductors and semiconductors
 - (3) Decreases for both conductors and semiconductors
 - (4) Increases for conductors but decreases for semiconductors

Answer (4)

12. The energy that will be ideally radiated by a 100 kW transmitter in 1 hour is

(1) $1 \times 10^5 \text{ J}$

(2) $36 \times 10^7 \text{ J}$

(3) $36 \times 10^4 \text{ J}$

(4) $36 \times 10^5 \text{ J}$

Answer (2)

13. Two hollow conducting spheres of radii R_1 and R_2 ($R_1 >> R_2$) have equal charges. The potential would be

(1) Dependent on the material property of the sphere

(2)More on bigger sphere

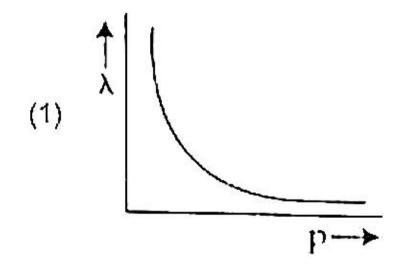
(3) More on smaller sphere

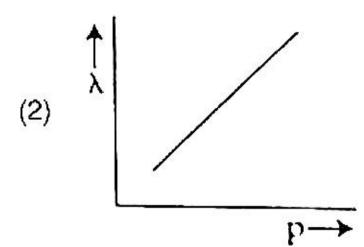
(4) Equal on both the spheres

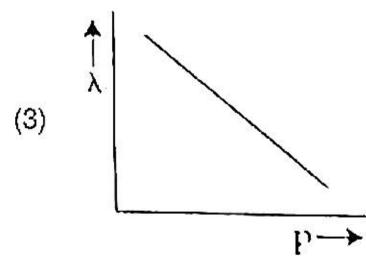
Answer (3)

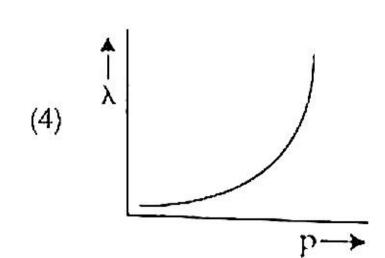
14. An electric lift with a maximum load of 2000 kg (lift + passengers) is moving up with a constant speed of 1.5 ms^{-1} . The frictional force opposing the motion is 3000 N. The minimum power delivered by the motor to the lift in watts is : $(g = 10 \text{ m s}^{-2})$

(1) 23500

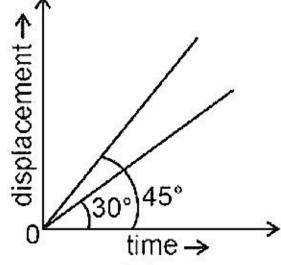

(2) 23000


(3) 20000


(4) 34500


Answer (4)

15. The graph which shows the variation of the de Broglie wavelength (λ) of a particle and its associated momentum (p) is



16.	Two resistors of resistance, 100 Ω and 200 Ω are connected in parallel in an electrical circuit. The ratio of the thermal energy developed in 100 Ω to that in 200 Ω in a given time is					
	(1)	4:1	(2)	1:2		
	(3)	2:1	(4)	1:4		
	Ans	swer (3)				
17.		ng solenoid of radius 1 mm has 100 turns per mr	n . If 1	A current flows in the solenoid, the magnetic field		
	(1)	6.28 × 10 ⁻⁴ T	(2)	$6.28 \times 10^{-2} \text{ T}$		
	(3)	$12.56 \times 10^{-2} \text{ T}$	(4)	12.56 × 10 ⁻⁴ T		
	Ans	swer (3)				
18.		quare loop of side 1 m and resistance 1 Ω is placed in the interpolation of magnetic field, the m		in a magnetic field of 0.5 T. If the plane of loop is etic flux through the loop is		
	(1)	Zero weber	(2)	2 weber		
	(3)	0.5 weber	(4)	1 weber		
	Ans	swer (3)				
19.	A co	opper wire of length 10 m and radius $\left(\frac{10^{-2}}{\sqrt{\pi}}\right)$ m	has e	electrical resistance of 10 Ω . The current density in		
	the	wire for an electric field strength of 10 (V/m) is				
	(1)	10 ⁵ A/m ²	(2)	10 ⁴ A/m ²		
	(3)	10 ⁶ A/m ²	(4)	10 ⁻⁵ A/m ²		
	Ans	swer (1)				
20.		o objects of mass 10 kg and 20 kg respectively are negligible mass. The distance of the center of m		nected to the two ends of a rigid rod of length 10 m of the system from the 10 kg mass is		
	(1)	5 m	(2)	$\frac{10}{3}$ m		
	(3)	$\frac{20}{3}$ m	(4)	10 m		
		swer (3)				
21.	frag			fragments having mass in the ratio $2:2:1$. If the endicular directions with speed v , the speed of the		
	(1)	$3\sqrt{2}v$	(2)	V		
	(3)	$\sqrt{2}v$	(4)	$2\sqrt{2}V$		
	A 62	swer (4)	3 -6			
22.	A b	E/ 2000 E/ 2000 Table 2		of 3.0 N, when placed at a particular point. The		
	(1)	180 N/kg				
	(2)	0.05 N/kg				
	(3)	50 N/kg				
	(4)	20 N/kg				
		swer (3)				

23.	The r	atio of the distances travelled by a	freely	falling body	in the 1st, 2nd, 3rd	and 4th second
	(1)	1:1:1:1		(2)	1:2:3:4	
	(3)	1:4:9:16		(4)	1:3:5:7	
	Ansv	ver (4)				
24.		onvex lens has radii of curvature, 2 er of the lens is	:0 cm e	each. If the r	efractive index of	the material of the lens is 1.5, the
	(1)	Infinity		(2)	+2 D	
	(3)	+20 D		(4)	+5 D	
	Ansv	ver (4)				
25.	The c	dimensions [MLT ⁻² A ⁻²] belong to th	е			
	(1)	Electric permittivity		(2)	Magnetic flux	
	(3)	Self inductance		(4)	Magnetic perme	eability
	Ansv	ver (4)				
26.		angular speed of a fly wheel movin n 16 seconds. The angular acceler		age and a second control of the cont	gular acceleration	changes from 1200 rpm to 3120
	(1)	104π		(2)	2π	
	(3)	4π		(4)	12π	
	Ansv	ver (3)				
27.	Matcl	h List-I with List-II				•30
		List-I		j	List-II	
		(Electromagnetic waves)		(Wa	velength)	
	(a)	AM radio waves	(i)	10 ⁻¹⁰ m		
	(b)	Microwaves	(ii)	10 ² m		
	(c)	Infrared radiations	(iii)	10 ⁻² m		
	(d)	X-rays	(iv)	10 ⁻⁴ m		
	Choo	se the correct answer from the opt	ions gi	iven below		
	(1)	(a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)		(2)	(a) - (iv), (b) - (ii	i), (c) - (ii), (d) - (i)
	(3)	(a) - (iii), (b) - (ii), (c) - (i), (d) - (iv)		(4)	(a) - (iii), (b) - (i	v), (c) - (ii), (d) - (i)
	Ansv	ver (1)				
28.	The p	beak voltage of the ac source is eq	ual to			
	(1)	$1/\sqrt{2}$ times the rms value of the ad	c sourc	ce (2)	The value of vo	Itage supplied to the circuit
	(3)	The rms value of the ac source		(4)	$\sqrt{2}$ times the ri	ms value of the ac source
	Ansv	ver (4)				
29.		initial tension on a stretched string along the string is	is dou	bled, then th	e ratio of the initi	al and final speeds of a transverse
	(1)	1:2		(2)	1:1	
	(3)	$\sqrt{2}:1$		(4)	1:√2	
	Ansv	ver (4)				

The displacement-time graphs of two moving particles make angles of 30° and 45° with the x-axis as shown in the figure. The ratio of their respective velocity is

(1) $1:\sqrt{3}$

(3) 1:1

 $\sqrt{3}:1$ (4) 1:2

Answer (1)

In half wave rectification, if the input frequency is 60 Hz, then the output frequency would be

(1) 120 Hz

Zero

(3) 30 Hz

(4) 60 Hz

Answer (4)

The ratio of the radius of gyration of a thin uniform disc about an axis passing through its centre and normal to its plane to the radius of gyration of the disc about its diameter is

(1) $1:\sqrt{2}$

(2) 2:1

(3) $\sqrt{2}:1$

(4) 4:1

Answer (3)

A light ray falls on a glass surface of refractive index $\sqrt{3}$, at an angle 60°. The angle between the refracted and reflected rays would be

(1) 120°

30°

(3) 60°

(4) 90°

Answer (4)

In the given nuclear reaction, the element X is 34.

 $^{22}_{11}$ Na $\to X + e^{+} + v$

(1) $^{22}_{12}Mg$

²³ Na

(3) $^{23}_{10}$ Ne

²²Ne

Answer (4)

Let T_1 and T_2 be the energy of an electron in the first and second excited states of hydrogen atoms, respectively. According to the Bohr's model of an atom, the ratio $T_1:T_2$ is

(1) 9:4

(2) 1:4

(3) 4:1

(4) 4:9

Answer (1)

SECTION-B

A series LCR circuit with inductance 10 H, capacitance 10 μF , resistance 50 Ω is connected to an ac source of voltage, $V = 200\sin(100t)$ volt. If the resonant frequency of the LCR circuit is v_0 and the frequency of the ac source is v, then

(1) $v = 100 \text{ Hz}; v_0 = \frac{100}{\pi} \text{ Hz}$

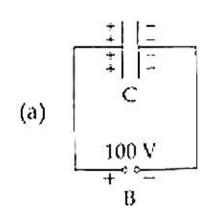
(2) $v_0 = v = 50 \text{ Hz}$

(3) $v_0 = v = \frac{50}{\pi} Hz$

(4) $v_0 = \frac{50}{\pi} \text{ Hz}, v = 50 \text{ Hz}$

Answer (3)

- 37. A ball is projected with a velocity, 10 ms⁻¹, at an angle of 60° with the vertical direction. Its speed at the highest point of its trajectory will be
 - (1) 10 ms⁻¹


(2) Zero

(3) $5\sqrt{3} \text{ ms}^{-1}$

(4) 5 ms⁻¹

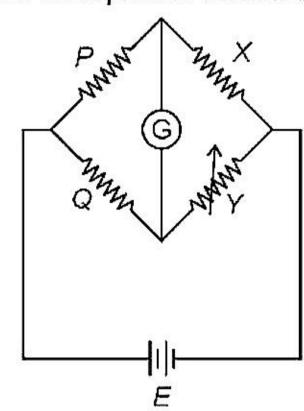
Answer (3)

38. A capacitor of capacitance C = 900 pF is charged fully by 100 V battery B as shown in figure (a). Then it is disconnected from the battery and connected to another uncharged capacitor of capacitance C = 900 pF as shown in figure (b). The electrostatic energy stored by the system (b) is

- (1) $1.5 \times 10^{-6} \text{ J}$

(2) $4.5 \times 10^{-6} \text{ J}$

(3) $3.25 \times 10^{-6} \text{ J}$


(4) 2.25 × 10⁻⁶ J

Answer (4)

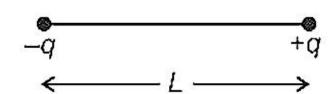
- 39. A nucleus of mass number 189 splits into two nuclei having mass number 125 and 64. The ratio of radius of two daughter nuclei respectively is
 - (1) 25:16
 - (2) 1:1
 - (3) 4:5
 - (4) 5:4

Answer (4)

40. A wheatstone bridge is used to determine the value of unknown resistance X by adjusting the variable resistance Y as shown in the figure. For the most precise measurement of X, the resistances P and Q

- (1) Do not play any significant role
- (2) Should be approximately equal to 2X
- (3) Should be approximately equal and are small
- 4) Should be very large and unequal

Answer (3)


- 41. The volume occupied by the molecules contained in 4.5 kg water at STP, if the intermolecular forces vanish away is
 - (1) 5.6 m³

(2) $5.6 \times 10^6 \,\mathrm{m}^3$

(3) $5.6 \times 10^3 \,\mathrm{m}^3$

(4) $5.6 \times 10^{-3} \text{ m}^3$

42. Two point charges -q and +q are placed at a distance of L, as shown in the figure.

The magnitude of electric field intensity at a distance R(R >> L) varies as:

(1) $\frac{1}{R^6}$

(2) $\frac{1}{R^2}$

 $(3) \quad \frac{1}{R^3}$

 $(4) \quad \frac{1}{R^4}$

Answer (3)

43. Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The stretching of a spring is determined by the shear modulus of the material of the spring. **Reason (R):** A coil spring of copper has more tensile strength than a steel spring of same dimensions.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are true and (R) is not the correct explanation of (A)
- (4) (A) is true but (R) is false

Answer (4)

44. Match List-I with List-II

	List-I		List-II
(a)	Gravitational constant (G)	(i)	[L ² T ⁻²]
(b)	Gravitational potential energy	(ii)	$[M^{-1}L^3T^{-2}]$
(c)	Gravitational potential	(iii)	[L T -2]
(d)	Gravitational intensity	(iv)	[ML ² T ⁻²]

Choose the correct answer from the options given below

- (1) (a) (iv), (b) (ii), (c) (i), (d) (iii)
- (2) (a) (ii), (b) (i), (c) (iv), (d) (iii)
- (3) (a) (ii), (b) (iv), (c) (i), (d) (iii)
- (4) (a) (ii), (b) (iv), (c) (iii), (d) (i)

Answer (3)

45.

The truth table for the given logic circuit is

	AB	<i>C</i>		A B
	0 0	0		0 0
(1)	0 1	1	(2)	0 1
	1 0	0		1 0
	1 1	1		1 1
	A B	<i>C</i>		A B
	0 0	1		0 0
(3)	0 1	0	(4)	0 1
	1 0	0		1 0
		I and the second		

Answer (4)

- 46. Two transparent media A and B are separated by a plane boundary. The speed of light in those media are 1.5×10^8 m/s and 2.0×10^8 m/s, respectively. The critical angle for a ray of light for these two media is
 - (1) $tan^{-1}(0.750)$

1 1 1

(2) $\sin^{-1}(0.500)$

(3) $\sin^{-1}(0.750)$

(4) tan-1 (0.500)

Answer (3)

- 47. The area of a rectangular field (in m²) of length 55.3 m and breadth 25 m after rounding off the value for correct significant digits is
 - $(1) 14 \times 10^2$

(2) 138×10^{1}

(3) 1382

(4) 1382.5

Answer (1)

- 48. A big circular coil of 1000 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s⁻¹. If the vertical component of earth's magnetic field at that place is 2×10^{-5} T and electrical resistance of the coil is 12.56Ω , then the maximum induced current in the coil will be
 - (1) 2 A

(2) 0.25 A

(3) 1.5 A

(4) 1 A

Answer (4)

- 49. From Ampere's circuital law for a long straight wire of circular cross-section carrying a steady current, the variation of magnetic field in the inside and outside region of the wire is
 - (1) A linearly decreasing function of distance upto the boundary of the wire and then a linearly increasing one for the outside region.
 - (2) Uniform and remains constant for both the regions.
 - (3) A linearly increasing function of distance upto the boundary of the wire and then linearly decreasing for the outside region.
 - (4) A linearly increasing function of distance r upto the boundary of the wire and then decreasing one with $\frac{1}{r}$ dependence for the outside region.

Answer (4)

- 50. Two pendulums of length 121 cm and 100 cm start vibrating in phase. At some instant, the two are at their mean position in the same phase. The minimum number of vibrations of the shorter pendulum after which the two are again in phase at the mean position is:
 - (1) 8

(2) 11

(3) 9

(4) 10

Answer (2)

SECTION-A

51. The IUPAC name of an element with atomic number 119 is

ununoctium

(2)ununennium

unnilennium

(4)unununnium

Answer (2)

52. Match List-II with List-II.

List-I

(Drug class)

List-II

(Drug molecule)

Antacids (a)

Antihistamines (b)

Analgesics

Salvarsan (i)

Morphine (ii)

Cimetidine

Antimicrobials

Seldane (iv)

Choose the correct answer from the options given below:

(a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)

(2) (a) - (iii), (b) - (ii), (c) - (iv), (d) - (i)

(a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

(4) (a) - (i), (b) - (iv), (c) - (ii), (d) - (iii)

Answer (3)

53. In one molal solution that contains 0.5 mole of a solute, there is

1000 g of solvent (1)

500 mL of solvent

500 g of solvent

100 mL of solvent \sim (4)

Answer (3)

54. Which statement regarding polymers is not correct?

Thermosetting polymers are reusable

Elastomers have polymer chains held together by weak intermolecular forces

Fibers possess high tensile strength

Thermoplastic polymers are capable of repeatedly softening and hardening on heating and cooling respectively

Answer (1)

55. $RMgX + CO_2 \xrightarrow{dry} Y \xrightarrow{H_gO^+} RCOOH$

What is Y in the above reaction?

(RCOO)₂Mg

RCOO-Mg⁺X

R₃CO-Mg⁺X

RCOO-X+ (4)

Answer (2)

56. Which of the following sequence of reactions is suitable to synthesize chlorobenzene?

(1) NH₂, HCI, Heating

(2) Benzene, Cl2, anhydrous FeCl3

(3) Phenol, NaNO₂, HCI, CuCl

(4) (HCI

Answer (2)

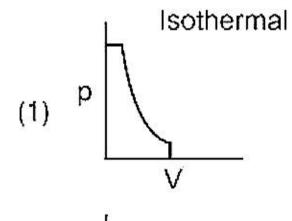
- 57. The pH of the solution containing 50 mL each of 0.10 M sodium acetate and 0.01 M acetic acid is [Given pKa of CH3COOH = 4.57]
 - (1) 2.57

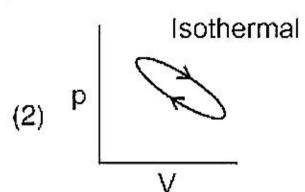
(2) 5.57

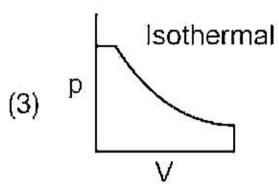
(3) 3.57

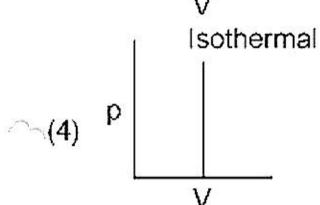
(4) 4.57

Answer (2)


58. The IUPAC name of the complex-


[Ag(H₂O)₂][Ag(CN)₂] is:

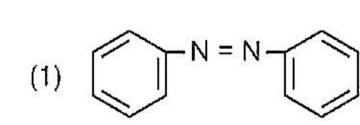

- (1) diaquasilver(l) dicyanidoargentate(l)
- (2) dicyanidosilver(II) diaquaargentate(II)
- (3) diaquasilver(II) dicyanidoargentate(II)
- (4) dicyanidosilver(I) diaquaargentate(I)

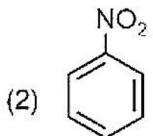

Answer (1)

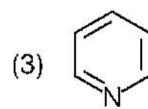
59. Which of the following p-V curve represents maximum work done?

Answer (3)

- 60. Amongst the following which one will have maximum 'lone pair lone pair' electron repulsions?
 - (1) XeF₂


(2) CIF₃


(3) İF₅


(4) SF₄

Answer (1)

61. The Kjeldahl's method for the estimation of nitrogen can be used to estimate the amount of nitrogen in which one of the following compounds?

(4) NH₂

Match List-II with List-II. 62.

List - I

Acetal

Oxime

Cyanohydrin

Schiff's base

(Products formed)

- (Reaction of carbonyl compound with)
- NH₂OH
 - RNH₂ (ii)

List - II

- (iii) alcohol
- HCN (iv)
- Choose the correct answer from the options given below

(1)
$$(a) - (iy) (b) - (iii) (c) - (ii) (d) - (i)$$

- (1) (a) (iv), (b) (iii), (c) (ii), (d) (i)
- (2) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (3) (a) (ii), (b) (iii), (c) (iv), (d) (i)
- (4) (a) (i), (b) (iii), (c) (ii), (d) (iv)

Answer (1)

(b)

- Gadolinium has a low value of third ionisation enthalpy because of 63.
 - high basic character

small size

high exchange enthalpy

high electronegativity (4)

Answer (3)

- 64. Which amongst the following is incorrect statement?
 - O₂ ion is diamagnetic
 - The bond orders of O_2^+ , O_2^- , O_2^- and O_2^{2-} are 2.5, 2, 1.5 and 1, respectively
 - C_2 molecule has four electrons in its two degenerate π molecular orbitals
 - (4) H_2^+ ion has one electron

Answer (1)

- Which one is not correct mathematical equation for Dalton's Law of partial pressure? Here p = total pressure 65. of gaseous mixture
 - $(1) \quad p_i = \chi_i p_i^*,$

where χ_i = mole fraction of ith gas in gaseous mixture p; = pressure of ith gas in pure state

- (2) $p = p_1 + p_2 + p_3$
- (3) $p = n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$
- (4) $p_i = \chi_i p$,

where p_i = partial pressure of i^{th} gas χ_i = mole fraction of ith gas in gaseous mixture

Answer (1)

66. Match List-I with List-II.

List - I

(Hydrides)

List - II

(Nature)

- MgH₂ (a)

Electron precise

GeH₄ (b)

Electron deficient (ii)

 B_2H_6 (c)

(iii) Electron rich

HF (d)

(iv) lonic

Choose the correct answer from the options given below

- $(1) \quad (a) (ii), (b) (iii), (c) (iv), (d) (i)$ $(2) \quad (a) (iv), (b) (i), (c) (ii), (d) (iii)$
- (3) (a) (iii), (b) (i), (c) (ii), (d) (iv) (4) (a) (i), (b) (ii), (c) (iv), (d) (iii)

Answer (2)

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). 67.

Assertion (A): ICI is more reactive than l2.

Reason (R): I-Cl bond is weaker than I-I bond.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) is not correct but (R) is correct
- Both (A) and (R) are correct and (R) is the correct explanation of (A).
- Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (A) is correct but (R) is not correct

Answer (2)

68. Given below are two statements

Statement I

The boiling points of the following hydrides of group 16 elements increases in the order –

Statement II

The boiling points of these hydrides increase with increase in molar mass.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect (3)
- Statement I is correct but Statement II is incorrect

Answer (3)

At 298 K, the standard electrode potentials of Cu²⁺ / Cu, Zn²⁺ / Zn, Fe²⁺ / Fe and Ag⁺ / Ag are 0.34 V, 69. -0.76 V, -0.44 V and 0.80 V, respectively.

On the basis of standard electrode potential, predict which of the following reaction cannot occur?

- $2CuSO_4(aq) + 2Ag(s) \rightarrow 2Cu(s) + Ag_2SO_4(aq)$
- $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$
- $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$
- $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$

Answer (1)

What mass of 95% pure CaCO₃ will be required to neutralise 50 mL of 0.5 M HCl solution according to the 70. following reaction?

$$CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + CO_{2(g)} + 2H_2O_{(l)}$$

[Calculate upto second place of decimal point]

(1) 9.50 g

1.25 g

(3) 1.32 g

(4)3.65 g

Answer (3)

- 71. Which of the following statement is not correct about diborane?
 - (1) Both the Boron atoms are sp2 hybridised.
 - (2) There are two 3-centre-2-electron bonds.
 - (3) The four terminal B-H bonds are two centre two electron bonds.
 - (4) The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.

Answer (1)

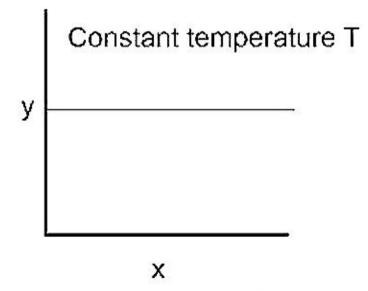
72. Given below are two statements

Statement I:

Primary aliphatic amines react with HNO2 to give unstable diazonium salts.

Statement II:

Primary aromatic amines react with HNO₂ to form diazonium salts which are stable even above 300 K. In the light of the above statements, choose the most **appropriate** answer from the options given below


- (1) Statement I is incorrect but Statement II is correct.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.

Answer (4)

- 73. Identify the incorrect statement from the following.
 - (1) The shapes of d_{xy} , d_{yz} and d_{zx} orbitals are similar to each other; and $d_{x^2-y^2}$ and d_{z^2} are similar to each other.
 - (2) All the five 5d orbitals are different in size when compared to the respective 4d orbitals.
 - (3) All the five 4d orbitals have shapes similar to the respective 3d orbitals.
 - (4) In an atom, all the five 3d orbitals are equal in energy in free state.

Answer (1)

74. The given graph is a representation of kinetics of a reaction.

The y and x axes for zero and first order reactions, respectively are

- (1) zero order (y = rate and x = concentration), first order (y = rate and x = $t_{1/2}$)
- (2) zero order (y = concentration and x = time), first order (y = $t_{1/2}$ and x = concentration)
- (3) zero order (y = concentration and x = time), first order (y = rate constant and x = concentration)
- (4) zero order (y = rate and x = concentration), first order (y = $t_{1/2}$ and x = concentration)

75. Given below are half cell reactions:

$$MnO_4^- \div 8H^+ + 5e^- \rightarrow Mn^{2+} \div 4H_2O$$

$$E_{Mn^{2+}/MnO_{4}}^{9} = -1.510 \text{ V}$$

$$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$$

$$E_{O_2/H_2O}^{g} = +1.223 \text{ V}$$

Will the permanganate ion, MnO₄ liberate O₂ from water in the presence of an acid?

- (1) No, because $E_{cell}^{\circ} = -2.733 \text{ V}$
- (2) Yes, because $E_{cell}^{\circ} = + 0.287 \text{ V}$
- (3) No, because $E_{cell}^{\circ} = -0.287 \text{ V}$
- (4) Yes, because $E_{cell}^{\circ} = + 2.733 \text{ V}$

Answer (2)

76. Identify the incorrect statement from the following

- (1) Lithium is the strongest reducing agent among the alkali metals.
- (2) Alkali metals react with water to form their hydroxides.
- (3) The oxidation number of K in KO2 is +4.
- (4) Ionisation enthalpy of alkali metals decreases from top to bottom in the group.

Answer (3)

77. Given below are two statements

Statement I:

The acidic strength of monosubstituted nitrophenol is higher than phenol because of electron withdrawing nitro group.

Statement II:

o-nitrophenol, m-nitrophenol and p-nitrophenol will have same acidic strength as they have one nitro group attached to the phenolic ring.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.

Answer (4)

78. Choose the correct statement:

- (1) Both diamond and graphite are used as dry lubricants.
- (2) Diamond and graphite have two dimensional network.
- (3) Diamond is covalent and graphite is ionic.
- (4) Diamond is sp³ hybridised and graphite is sp² hybridized.

79. Given below are two statements:

Statement I: The boiling points of aldehydes and ketones are higher than hydrocarbons of comparable molecular masses because of weak molecular association in aldehydes and ketones due to dipole interactions.

Statement II: The boiling points of aldehydes and ketones are lower than the alcohols of similar molecular masses due to the absence of H-bonding.

In the light of the above statements, choose the most appropriate answer from the given below

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (2)

80. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

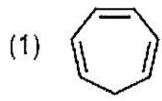
In a particular point defect, an ionic solid is electrically neutral, even if few of its cations are missing from its unit cells.

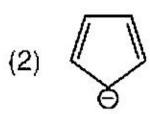
Reason (R):

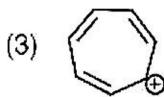
In an ionic solid, Frenkel defect arises due to dislocation of cation from its lattice site to interstitial site, maintaining overall electrical neutrality.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct


Answer (3)


- 81. The incorrect statement regarding chirality is
 - (1) A racemic mixture shows zero optical rotation
 - (2) S_N1 reaction yields 1:1 mixture of both enantiomers
 - (3) The product obtained by S_N2 reaction of haloalkane having chirality at the reactive site shows inversion of configuration
 - (4) Enantiomers are superimposable mirror images on each other


Answer (4)

82. Match List-II with List-II

	List-I		List-II
(a)	Li	(i)	absorbent for carbon dioxide
(b)	Na	(ii)	electrochemical cells
(c)	KOH	(iii)	coolant in fast breeder reactors
(d)	Cs	(iv)	photoelectric cell
Cho	ose the correct answer from the options given be	low:	
(1)	(a) - (ii), (b) - (iii), (c) - (i), (d) - (iv)	(2)	(a) - (iv), (b) - (i), (c) - (iii), (d) - (ii)
(3)	(a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)	(4)	(a) - (i), (b) - (iii), (c) - (iv), (d) - (ii)

Answer (1)

- 84. The incorrect statement regarding enzymes is
 - (1) Enzymes are very specific for a particular reaction and substrate.
 - (2) Enzymes are biocatalysts.
 - (3) Like chemical catalysts enzymes reduce the activation energy of bio processes.
 - (4) Enzymes are polysaccharides.

Answer (4)

85. Given below are two statements

Statement I:

In the coagulation of a negative sol, the flocculating power of the three given ions is in the order

$$A|^{3+} > Ba^{2+} > Na^{+}$$

Statement II:

In the coagulation of a positive sol, the flocculating power of the three given salts is in the order

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Statement I is incorrect but Statement II is correct.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is correct but Statement II is incorrect.

Answer (4)

SECTION-B

- 86. The order of energy absorbed which is responsible for the color of complexes
 - (A) $[Ni(H_2O)_2(en)_2]^{2+}$
 - (B) $[Ni(H_2O)_4(en)]^{2+}$ and
 - (C) $[Ni(en)_3]^{2+}$

is

- (1) (B) > (A) > (C)
- (2) (A) > (B) > (C)
- (3) (C) > (B) > (A)
- (4) (C) > (A) > (B)

$$Ni(s) \div 2Ag^{+}(0.001M) \rightarrow Ni^{2+}(0.001M) + 2Ag(s)$$

(Given that $E_{cell}^{\circ} = 10.5 \text{ V}, \frac{2.303 \text{ RT}}{F} = 0.059 \text{ at } 298 \text{ K}$)

(1) 1.05 V

(2) 1.0385 V

(3) 1.385 V

(4) 0.9615 V

Answer (NA)

88. If radius of second Bohr orbit of the He+ ion is 105.8 pm, what is the radius of third Bohr orbit of Li²⁺ ion?

(1) 158.7 Å

(2) 158.7 pm

(3) 15.87 pm

(4) 1.587 pm

Answer (2)

89. The correct IUPAC name of the following compound is

- (1) 6-bromo-4-methyl-2-chlorohexan-4-ol
- (2) 1-bromo-5-chloro-4-methylhexan-3-ol
- (3) 6-bromo-2-chloro-4-methylhexan-4-ol
- (4) 1-bromo-4-methyl-5-chlorohexan-3-ol

Answer (2)

90. The product formed from the following reaction sequence is

91. Which one of the following is not formed when acetone reacts with 2-pentanone in the presence of dilute NaOH followed by heating?

Answer (3)

- 92. Copper crystallises in fcc unit cell with cell edge length of 3.608×10^{-8} cm. The density of copper is 8.92 g cm^{-3} . Calculate the atomic mass of copper.
 - (1) 65 u

(2) 63.1 u

(3) 31.55 u

(4) 60 u

Answer (2)

- 93. A 10.0 L flask contains 64 g of oxygen at 27° C. (Assume O₂ gas is behaving ideally). The pressure inside the flask in bar is (Given R = 0.0831 L bar K⁻¹ mol⁻¹)
 - (1) 4.9

(2) 2.5

(3) 498.6

(4) 49.8

Answer (1)

- 94. The pollution due to oxides of sulphur gets enhanced due to the presence of:
 - (a) particulate matter

(b) ozone

(c) hydrocarbons

(d) hydrogen peroxide

Choose the most appropriate answer from the options given below:

(1) (a), (c), (d) only

(2) (a), (d) only

(3) (a), (b), (d) only

(4) (b), (c), (d) only

Answer (3)

95. $3O_2(g) \rightleftharpoons 2O_3(g)$

for the above reaction at 298 K, K_C is found to be 3.0×10^{-59} . If the concentration of O_2 at equilibrium is 0.040 M then concentration of O_3 in M is

(1) 1.2×10^{21}

(2) 4.38×10^{-32}

(3) 1.9×10^{-63}

(4) 2.4 × 10³¹

Answer (2)

96. For a first order reaction A → Products, initial concentration of A is 0.1 M, which becomes 0.001 M after 5 minutes. Rate constant for the reaction in min⁻¹ is

(1) 0.2303

(2) 1.3818

(3) 0.9212

(4) 0.4606

Answer (3)

97.	In the neutral or faintly alkaline medium, KMnO4 oxidises iodide into iodate. The change in oxidation state of
	manganese in this reaction is from

$$(3)$$
 +6 to +4

Answer (2)

Compound X on reaction with O₃ followed by Zn/H₂O gives formaldehyde and 2-methyl propanal as products. 98. The compound X is

(1) Pent-2-ene

3-Methylbut-1-ene

2-Methylbut-1-ene

2-Methylbut-2-ene

Answer (2)

99. Given below are two statements:

Statement I:

In Lucas test, primary, secondary and tertiary alcohols are distinguished on the basis of their reactivity with conc. HCl + ZnCl2, known as Lucas Reagent.

Statement II:

Primary alcohols are most reactive and immediately produce turbidity at room temperature on reaction with Lucas Reagent.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect
- Statement I is correct but Statement II is incorrect

Answer (4)

Match List-I with List-II.

	List-I		List-II
	(Ores)		(Composition)
(a)	Haematite	(i)	Fe ₃ O ₄
(b)	Magnetite	(ii)	ZnCO ₃
(c)	Calamine	(iii)	Fe ₂ O ₃
(d)	Kaolinite	(iv)	$[AI_2(OH)_4Si_2O_5]$
Ch	nose the correct answer from t	ne onti	ons given helow:

Choose the correct answer from the options given below:

- (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
- (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Answer (3)

BOTANY

SECTION-A

- 101. Which one of the following statement is not true regarding gel electrophoresis technique?
 - (1) Bright orange coloured bands of DNA can be observed in the gel when exposed to UV light.
 - (2) The process of extraction of separated DNA strands from gel is called elution.
 - (3) The separated DNA fragments are stained by using ethidium bromide.
 - (4) The presence of chromogenic substrate gives blue coloured DNA bands on the gel.

Answer (4)

- 102. Which one of the following produces nitrogen fixing nodules on the roots of Alnus?
 - Beijerinckia
 - (2) Rhizobium
 - (3) Frankia
 - (4) Rhodospirillum

Answer (3)

103. Given below are two statements:

Statement I:

Mendel studied seven pairs of contrasting traits in pea plants and proposed the Laws of Inheritance.

Statement II:

Seven characters examined by Mendel in his experiment on pea plants were seed shape and colour, flower colour, pod shape and colour, flower position and stem height.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (2)

- 104. Which of the following is **not** a method of ex situ conservation?
 - (1) Cryopreservation

(2) In vitro fertilization

(3) National Parks

(4) Micropropagation

Answer (3)

- 105. Which one of the following statements cannot be connected to Predation?
 - (1) It is necessitated by nature to maintain the ecological balance
 - (2) It helps in maintaining species diversity in a community
 - (3) It might lead to extinction of a species
 - (4) Both the interacting species are negatively impacted

106 Match List-I with List-II

	List-I		List-II
(a)	Manganese	(i)	Activates the enzyme catalase
(b)	Magnesium	(ii)	Required for pollen germination
(c)	Boron	(iii)	Activates enzymes of respiration
(d)	Iron	(iv)	Functions in splitting of water during photosynthesis

Choose the correct answer from the options given below:

- (1) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
- (2) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (3) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Answer (3)

- 107. The gaseous plant growth regulator is used in plants to:
 - (1) kill dicotyledonous weeds in the fields
 - (2) speed up the malting process
 - (3) promote root growth and roothair formation to increase the absorption surface
 - (4) help overcome apical dominance

Answer (3)

- 108. The appearance of recombination nodules on homologous chromosomes during meiosis characterizes :
 - (1) Terminalization

(2) Synaptonemal complex

(3) Bivalent

(4) Sites at which crossing over occurs

Answer (4)

- 109. In old trees the greater part of secondary xylem is dark brown and resistant to insect attack due to :
 - (a) secretion of secondary metabolities and their deposition in the lumen of vessels.
 - (b) deposition of organic compounds like tannins and resins in the central layers of stem.
 - (c) deposition of suberin and aromatic substances in the outer layer of stem.
 - (d) deposition of tannins, gum, resin and aromatic substances in the peripheral layers of stem.
 - (e) presence of parenchyma cells, functionally active xylem elements and essential oils.

Choose the correct answer from the options given below:

(1) (b) and (d) Only

(2) (a) and (b) Only

(3) (c) and (d) Only

(4) (d) and (e) Only

Answer (2)

- 110. Identify the correct set of statements:
 - (a) The leaflets are modified into pointed hard thorns in Citrus and Bougainvillea
 - (b) Axillary buds form slender and spirally coiled tendrils in cucumber and pumpkin
 - (c) Stem is flattened and fleshy in Opuntia and modified to perform the function of leaves
 - (d) Rhizophora shows vertically upward growing roots that help to get oxygen for respiration
 - (e) Subaerially growing stems in grasses and strawberry help in vegetative propagation

Choose the correct answer from the options given below:

(1) (a), (b), (d) and (e) Only

(2) (b) and (c) Only

(3) (a) and (d) Only

(4) (b), (c), (d) and (e) Only

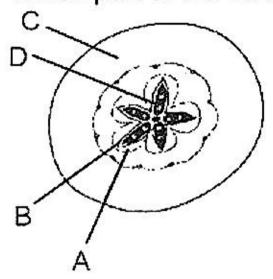
111.	XO	XO type of sex determination can be found in :								
	(1)	Monkeys	(2)	Drosophila						
	(3)	Birds	(4)	Grasshoppers						
	Ans	wer (4)								
112.	Rea	d the following statements about the vascular bu	ndles	•						
	(a)	In roots, xylem and phloem in a vascular bundle radii.	are a	rranged in an alternate manner along the different						
	(b)	Conjoint closed vascular bundles do not posses	s can	nbium						
	(c)	In open vascular bundles, cambium is present in	n betv	veen xylem and phloem						
	(d)	The vascular bundles of dicotyledonous stem po	osses	s endarch protoxylem						
	(e)	In monocotyledonous root, usually there are mo	re tha	an six xylem bundles present						
	Cho	ose the correct answer from the options given b	pelow	1						
	(1)	(a), (c), (d) and (e) Only	(2)	(a), (b) and (d) Only						
	(3)	(b), (c), (d) and (e) Only	(4)	(a), (b), (c) and (d) Only						
	Ans	swer (NA) No option is correct								
113.	The	process of translation of mRNA to proteins begin	ns as	soon as :						
	(1)	The tRNA is activated and the larger subunit of	riboso	ome encounters mRNA						
	(2)	The small subunit of ribosome encounters mRN	IA							
	(3)	The larger subunit of ribosome encounters mRN	NA							
	(4)	Both the subunits join together to bind with mRN	AV							
	Ans	wer (2)								
114.	The	device which can remove particulate matter pres	sent ir	the exhaust from a thermal power plant is :						
	(1)	Catalytic Convertor	(2)	STP						
	(3)	Incinerator	(4)	Electrostatic Precipitator						
	Ans	swer (4)								
115.	The	flowers are Zygomorphic in:								
	(a)	Mustard	(b)	Gulmohar						
	(c)	Cassia	(d)	Datura						
	(e)	Chilly	* **							
	0.000	Choose the correct answer from the options given below:								
	(1)	(c), (d), (e) Only	(2)	(a), (b), (c) Only						
		(b), (c) Only	(4)	(d), (e) Only						
		swer (3)								
116.	lder	ntify the incorrect statement related to Pollination	1:							
	(1)	Moths and butterflies are the most dominant po		ng agents among insects						
	(2)	Pollination by water is quite rare in flowering pla		99						
	(3)	Pollination by water is quite rare in newering pla		pollination						
	20 1000	Flowers produce foul odours to attract flies and								
	8 19	wer (1)	ACCIII	os to got poliniated						
	AIIS	OMACL (I)								

117.	Which of the following is not observed during apoplastic pathway?							
	(1)	Apoplast is continuous and does not provide any barrier to water movement						
	(2) Movement of water occurs through intercellular spaces and wall of the cells							
	(3)	The movement does not involve crossing of c	ell men	nbrane				
	(4)	The movement is aided by cytoplasmic stream	ning					
	Ans	swer (4)						
118.	Wha	at is the net gain of ATP when each molecule o	f gluco:	se is converted to two molecules of pyruvic acid?				
	2072-26	Eight		Four				
	(3)	Six	101 201 - 2000	Two				
	Ans	swer (4)	0 10					
119	"Gird	dling Experiment" was performed by Plant Phys	siologis	ts to identify the plant fissue through which:				
110.	227.027.20			water is transported				
	NO. 10 PM		20000000	for both water and food transportation				
	200		(•)					
100								
120.			sh tha	datritus is dagradad into simplor substances by				
	99		in the	detritus is degraded into simpler substances by				
			s is rich	in lignin and chitin.				
	(1)	Statement I is incorrect but Statement II is co	orrect	200 July 200 July 100				
	(2)	Both Statement I and Statement II are correct	ct					
	(3)	Both Statement I and Statement II are incorr	ect					
	(4)	Statement I is correct but Statement II is inco	orrect					
	Ans	swer (4)	~					
121.	Whi	ich one of the following plants shows vexillary a	estivati	on and diadelphous stamens?				
	0.22			Colchicum autumnale				
	1677100101			Allium cepa				
	(a) (b)		1					
122	Give	en below are two statements :						
,	V-02-10-							
	4578 TOTAL SAN							
	Statement II: Cleistogamy is disadvantageous as there is no chance for cross pollination In the light of the above statements, choose the correct answer from the options given below:							
	(1)	5						
	(2)	Both Statement I and Statement II are correct	ct					
	(3)							
	967AN AN							
	2000							
	118. 120.	(1) (2) (3) (4) Ans 118. Wh (1) (3) Ans 119. "Gir (1) (3) Ans 120. Giv Sta mic Sta in ti (1) (2) (3) (4) Ans 121. Wh (1) (3) Ans 122. Giv Sta Cle Sta Cle In ti (1) (2) (3) (4) (4) (5) (4) (5) (6) (7) (7) (8) (9) (9) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (8) (9) (9) (9) (1) (1) (1) (2) (3) (4) (4) (4) (4) (5) (6) (7) (8) (9) (9) (9) (1) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (5) (6) (7) (8) (8) (9) (9) (1) (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(1) Apoplast is continuous and does not provide a (2) Movement of water occurs through intercellula (3) The movement does not involve crossing of a (4) The movement is aided by cytoplasmic stream Answer (4) 118. What is the net gain of ATP when each molecule o (1) Eight (3) Six Answer (4) 119. "Girdling Experiment" was performed by Plant Physi (1) osmosis is observed (3) food is transported Answer (3) 120. Given below are two statements: Statement II: Decomposition is a process in whice microbes. Statement II: Decomposition is faster if the detritus In the light of the above statements, choose the co (1) Statement I is incorrect but Statement II are correct (3) Both Statement I and Statement II are incorrect (4) Statement I is correct but Statement II is incorrect (4) 121. Which one of the following plants shows vexillary at (1) Solanum nigrum (3) Pisum sativum Answer (3) 122. Given below are two statements: Statement I: Cleistogamous flowers are invariably autogamous Statement II: Cleistogamy is disadvantageous as there is no chall in the light of the above statements, choose the co (1) Statement I is incorrect but Statement II is correct in the light of the above statements, choose the correct in the light of the above statement II are correct in the light of the above statement II are correct in the light of the above statement II are correct in the statement II are correct in the light of the above statement II are correct in the light of the above statement II are correct in the statement II are incorrect in	(1) Apoplast is continuous and does not provide any bar (2) Movement of water occurs through intercellular space (3) The movement does not involve crossing of cell men (4) The movement is aided by cytoplasmic streaming Answer (4) 118. What is the net gain of ATP when each molecule of glucos (1) Eight (2) (3) Six (4) Answer (4) 119. "Girdling Experiment" was performed by Plant Physiologis (1) osmosis is observed (2) (3) food is transported (4) Answer (3) 120. Given below are two statements: Statement I: Decomposition is a process in which the microbes. Statement II: Decomposition is faster if the detritus is rich In the light of the above statements, choose the correct (2) Both Statement I and Statement II are correct (3) Both Statement I and Statement II are incorrect (4) Statement I is correct but Statement II is incorrect Answer (4) 121. Which one of the following plants shows vexillary aestivati (1) Solanum nigrum (2) (3) Pisum sativum (4) Answer (3) 122. Given below are two statements: Statement I: Cleistogamous flowers are invariably autogamous Statement II: Cleistogamy is disadvantageous as there is no chance for In the light of the above statements, choose the correct and 1: Cleistogamy is disadvantageous as there is no chance for In the light of the above statement II are correct (3) Both Statement I is incorrect but Statement II is correct (4) Statement II is correct but Statement III is correct (4) Statement I is correct but Statement III is incorrect (4) Statement I is correct but Statement II is incorrect (4) Statement I is correct but Statement II is incorrect (4) Statement I is correct but Statement II is incorrect (4) Statement I is correct but Statement II is incorrect (4) Statement I is correct but Statement II is incorrect (4) Statement I is correct but Statement II is incorrect				

123.	Ехо	skeleton of arthropods is composed of :									
	(1)	Glucosamine	(2)	Cutin							
	(3)	Cellulose	(4)	Chitin							
	Ans	wer (4)									
124.	Give	Given below are two statements : one is labelled as									
	Assertion (A) and the other is labelled as Reason (R).										
	Assertion (A):										
	Poly	merase chain reaction is used in DNA amplificati	on.								
	Rea	son (R):									
	The	ampicillin resistant gene is used as a selectable	mark	er to check transformation							
	In th	ne light of the above statements, choose the corre	ect a	nswer from the options given below:							
	(1)	(A) is not correct but (R) is correct									
	(2)	Both (A) and (R) are correct and (R) is the corre	ct ex	planation of (A)							
	(3)	Both (A) and (R) are correct but (R) is not the co	orrect	explanation of (A)							
	(4)	(A) is correct but (R) is not correct									
	Ans	wer (3)									
125.	Which of the following is incorrectly matched?										
	(1)	Volvox - Starch	(2)	Ectocarpus – Fucoxanthin							
	(3)	Ulothrix - Mannitol	(4)	Porphyra - Floridian Starch							
	Ans	swer (3)									
126.	phyt	The state of the s		ent years. Application of which of the following hormone is known to produce female flowers in							
	(1)	Cytokinin	¬(2)	ABA							
	(3)	Gibberellin	(4)	Ethylene							
	Ans	swer (4)									
127.		ch one of the following is not true regarding t miosmosis? It involves:	he re	elease of energy during ATP synthesis through							
	(1)	Reduction of NADP to NADPH2 on the stroma s	ide o	f the membrane							
	(2)	Breakdown of proton gradient									
	(3)	Breakdown of electron gradient									
	(4)	Movement of protons across the membrane to the	he str	roma							
	Ans	wer (3)									
128.	DNA	A polymorphism forms the basis of :									
	(1)	Translation									
	(2)	Genetic mapping									
	(3)	DNA finger printing									
	(4)	Both genetic mapping and DNA finger printing									
	Ans	swer (4)									

129.	Given below are two statements: Statement I:		
	The primary CO ₂ acceptor in C ₄ plants is phosphoer	olpyri	uvate and is found in the mesophyll cells.
	Statement II:		
	Mesophyll cells of $\mathrm{C_4}$ plants lack RuBisCo enzyme.		
	In the light of the above statements, choose the cor	r ec t a	nswer from the options given below:
	(1) Statement I is incorrect but Statement II is cor		
	(2) Both Statement I and Statement II are correct		
	 (3) Both Statement I and Statement II are incorred (4) Statement I is correct but Statement II is incorred 		
	Answer (2)		
130.	Habitat loss and fragmentation, over exploitation, ali	en spe	ecies invasion and co-extinction are causes for:
	(1) Natality	(2)	Population explosion
	(3) Competition	(4)	Biodiversity loss
V. 12000	Answer (4)		
131.	What amount of energy is released from glucose du	ring la	
	(1) Less than 7%	(2)	Approximately 15%
	(3) More than 18%	(4)	About 10%
	Answer (1)		
132.	Read the following statements and choose the set o	f corr	ect statements :
	(a) Euchromatin is loosely packed chromatin		
	(b) Heterochromatin is transcriptionally active	and D	NA in nucleocome
	(c) Histone octomer is wrapped by negatively char(d) Histones are rich in lysine and arginine	geu D	INA III flucieosome
	(e) A typical nucleosome contains 400 bp of DNA	helix	
	Choose the correct answer from the options given b		
		(2)	(b), (d), (e) Only
	(3) (a), (c), (d) Only	(4)	(b), (e) Only
	Answer (3)		
133.	Which one of the following never occurs during mitor	tic cell	division?
	(1) Coiling and condensation of the chromatids		
	(2) Spindle fibres attach to kinetochores of chromo		S
	(3) Movement of centrioles towards opposite poles(4) Define of the centrioles towards opposite poles		
	(4) Pairing of homologous chromosomes		
	Answer (4)		
134.	Hydrocolloid carrageen is obtained from:		
	(1) Phaeophyceae only	(2)	Chlorophyceae and Phaeophyceae
	(3) Phaeophyceae and Rhodophyceae	(4)	Rhodophyceae only
	Answer (4)		
135.	Which one of the following plants does not show pla	sticity	?
	(1) Maize	(2)	Cotton
	(3) Coriander	(4)	Buttercup
	Answer (1)		

- 136. Which one of the following will accelerate phosphorus cycle?
 - (1) Rain fall and storms


(2) Burning of fossil fuels

(3) Volcanic activity

(4) Weathering of rocks

Answer (4)

137. Which part of the fruit, labelled in the given figure makes it a false fruit?

(1) $D \rightarrow Seed$

(2) $A \rightarrow Mesocarp$

(3) $B \rightarrow Endocarp$

(4) C → Thalamus

Answer (4)

- 138. What is the role of large bundle sheath cells found around the vascular bundles in C4 plants?
 - (1) To protect the vascular tissue from high light intensity
 - (2) To provide the site for photorespiratory pathway
 - (3) To increase the number of chloroplast for the operation of Calvin cycle
 - (4) To enable the plant to tolerate high temperature

Answer (3)

- 139. In the following palindromic base sequences of DNA, which one can be cut easily by particular restriction enzyme?
 - (1) 5'GTATTC3'; 3'CATAAG5'

(2) 5'GATACT3'; 3'CTATGA5'

(3) 5'GAATTC3'; 3'CTTAAG5'

(4) 5'CTCAGT3'; 3'GAGTCA5'

Answer (3)

- 140. Read the following statements on lipids and find out correct set of statements:
 - (a) Lecithin found in the plasma membrane is a glycolipid
 - (b) Saturated fatty acids possess one or more c = c bonds
 - (c) Gingely oil has lower melting point, hence remains as oil in winter
 - (d) Lipids are generally insoluble in water but soluble in some organic solvents
 - (e) When fatty acid is esterified with glycerol, monoglycerides are formed

Choose the correct answer from the option given below:

(1) (a), (b) and (d) only

(2) (a), (b) and (c) only

(3) (a), (d) and (e) only

(4) (c), (d) and (e) only

Answer (4)

141. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Mendel's law of Independent assortment does not hold good for the genes that are located closely on the same chromosome.

Reason (R): Closely located genes assort independently.

In the light of the above statements, choose the correct answer from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

- 142. The entire fleet of buses in Delhi were converted to CNG from diesel. In reference to this, which one of the following statements is false?
 - (1) It cannot be adulterated like diesel
 - (2) CNG burns more efficiently than diesel
 - (3) The same diesel engine is used in CNG buses making the cost of conversion low
 - (4) It is cheaper than diesel

Answer (3)

143. Match the plant with the kind of life cycle it exhibits:

	List-I		List-II
(a)	Spirogyra	(i)	Dominant diploid sporophyte vascular plant, with highly reduced male or female gametophyte
(b)	Fern	(ii)	Dominant haploid free-living gametophyte
(c)	Funaria	(iii)	Dominant diploid sporophyte alternating with reduced gametophyte called prothallus
(d)	Cycas	(iv)	Dominant haploid leafy gametophyte alternating with partially dependent multicellular sporophyte

Choose the correct answer from the options given below:

- (1) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- (2) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (3) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (4) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

Answer (3)

144. Match List-I with List-II.

	List-I		List-II
(a)	Metacentric chromosome	(i)	Centromere situated close to the end forming one extremely short and one very long arms
(b)	Acrocentric chromosome	(ii)	Centromere at the terminal end
(c)	Submetacentric		Centromere in the middle forming two equal arms of chromosomes
(d)	Telocentric chromosome	(iv)	Centromere slightly away from the middle forming one shorter arm and one longer arm

Choose the correct answer from the options given below:

- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (3) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
- (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

Answer (2)

145.	Transposons can be used during which one of the following?								
	(1)	Gene sequencing	(2)	Polymerase Chain Reaction					
	(3)	Gene Silencing	(4)	Autoradiography					
	Ans	swer (3)							
146.	Whi	nich of the following occurs due to the presence of autosome linked dominant trait?							
	(1)	Thalessemia	(2)	Sickle cell anaemia					
	(3)	Myotonic dystrophy	(4)	Haemophilia					
	Ans	swer (3)							
147.	7. While explaining interspecific interaction of population, (+) sign is assigned for beneficial interaction, (-) sign is assigned for detrimental interaction and (0) for neutral interaction. Which of the following interactions of be assigned (+) for one specifies and (-) for another specifies involved in the interaction?								
	(1)	Competition	(2)	Predation					
	(3)	Amensalim	(4)	Commensalism					
	Ans	swer (2)							
148.	Add	ition of more solutes in a given solution will :							
	(1)	not affect the water potential at all	(2)	raise its water potential					
	(3)	lower its water potential	(4)	make its water potential zero					
	Ans	swer (3)							
149. If a geneticist uses the blind approach for sequencing to assignment of function to different segments, the methodo				20000 ADDIO AND					
	(1)	Bioinformatics							
	(2)	Sequence annotation							
	(3)	Gene mapping							
	(4)	Expressed sequence tags							
	Ans	swer (2)							
150.	150. The anatomy of springwood shows some peculiar features. Identify the correct set of statemen springwood.								
	(a)	It is also called as the earlywood							
	(b)	In spring season cambium produces xylem elem	ents	with narrow vessels					
	(c)	It is lighter in colour							
	(d)	The springwood along with autumnwood shows	alten	nate concentric rings forming annual rings					
	(e)	It has lower density							
	Choose the correct answer from the options given below:								
	(1)	(c), (d) and (e) Only							
	(2)	(a), (b), (d) and (e) Only							
	(3)	(a), (c), (d) and (e) Only							
	(4)	(a), (b) and (d) Only							
	Ans	Answer (3)							

ZOOLOGY

SECTION-A

			Seltina Wilds An					
151.	Whi	ch of the following functions is not performed by	secre	tions from salivary glands?				
	(1)	Digestion of disaccharides	(2)	Control bacterial population in mouth				
	(3)	Digestion of complex carbohydrates	(4)	Lubrication of oral cavity				
	Ans	swer (1)						
152.	If '8	* <i>Drosophila</i> in a laboratory population of '80' di individuals per <i>Drosophila</i> per week.	ed di	uring a week, the death rate in the population is				
	(1)	zero	(2)	0.1				
	(3)	10	(4)	1.0				
	Ans	swer (2)						
153.	Give	en below are two statements:						
	Stat	tement I :						
	The	release of sperms into the seminiferous tubules	is cal	led spermiation.				
	Stat	Statement II :						
	Spe	rmiogenesis is the process of formation of sperm	s fror	n spermatogonia.				
	In the light of the above statements, choose the most appropriate answer from the options given below							
	(1)	Statement I is incorrect but Statement II is corr	ect					
	(2)	Both Statement I and Statement II are correct						
	(3)	Both Statement I and Statement II are incorrect	t					
	(4)	Statement I is correct but Statement II is incorr	ect					
	Ans	swer (4)						
154.	In-s	itu conservation refers to:						
	(1)	Conserve only extinct species						
	(2)	Protect and conserve the whole ecosystem						
	(3)	Conserve only high-risk species						
	(4)	Conserve only endangered species						
	Ans	swer (2)						
155.	Sele	ect the incorrect statement with reference to mito	sis:					
	(1)	Splitting of centromere occurs at anaphase						
	(2)	All the chromosomes lie at the equator at metap	hase	1				
	(3)	Spindle fibres attach to centromere of chromoso	omes					
	(4)	Chromosomes decondense at telophase						
	Ans	swer (3)						

- 156. If the length of a DNA molecule is 1.1 metres, what will be the approximate number of base pairs?
 - (1) 6.6×10^6 bp

(2) 3.3×10^9 bp

(3) 6.6×10^9 bp

(4) 3.3×10^6 bp

Answer (2)

157. Given below are two statements:

Statement I:

The coagulum is formed of network of threads called thrombins.

Statement II:

Spleen is the graveyard of erythrocytes.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (1)

- 158. Tegmina in cockroach, arises from
 - (1) Prothorax and Mesothorax

(2) Prothorax

(3) Mesothorax

(4) Metathorax

Answer (3)

- 159. In gene therapy of Adenosine Deaminase (ADA) deficiency, the patient requires periodic infusion of genetically engineered lymphocytes because :
 - (1) Genetically engineered lymphocytes are not immortal cells.
 - (2) Retroviral vector is introduced into these lymphocytes.
 - (3) Gene isolated from marrow cells producing ADA is introduced into cells at embryonic stages
 - (4) Lymphocytes from patient's blood are grown in culture, outside the body.

Answer (1)

160. Given below are two statements:

Statement I:

Autoimmune disorder is a condition where body defense mechanism recognizes its own cells as foreign bodies.

Statement II:

Rheumatoid arthritis is a condition where body does not attack self cells.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

161.	At which stage of life the oogenesis process is initiated?					
	(1)	Adult	(2)	Puberty		
	(3)	Embryonic development stage	(4)	Birth		
	Ans	swer (3)				
162.	Whi	ch of the following is a correct match for disease	and i	ts symptoms?		
	(1)	Muscular dystrophy – An auto immune disorder	caus	ing progressive degeneration of skeletal muscle		
	(2)	Arthritis – Inflammed joints				
	(3)	Tetany – High Ca ²⁺ level causing rapid spasms.				
	(4)	Myasthenia gravis – Genetic disorder resulting in	n wea	akening and paralysis of skeletal muscle		
	Ans	swer (2)				
163.	Whi	ch of the following is present between the adjaces	nt bo	nes of the vertebral column?		
	(1)	Smooth muscle	(2)	Intercalated discs		
	(3)	Cartilage	(4)	Areolar tissue		
	Ans	swer (3)				
164.			ange	ment in ascending order is correct in case of		
	2000000	nals?				
	(1)	Kingdom, Order, Phylum, Class, Family, Genus,				
	(2)	ngdom, Phylum, Class, Order, Family, Genus, Species				
	(3)	Kingdom, Class, Phylum, Family, Order, Genus,				
	(4)	Kingdom, Order, Class, Phylum, Family, Genus	, Spe	cies		
Not West facility	Ans	swer (2*)				
165.	A dehydration reaction links two glucose molecules to product maltose. If the formula for glucose is $C_6H_{12}O_6$ then what is the formula for maltose?					
	(1)	C ₁₂ H ₂₄ O ₁₁	(2)	C ₁₂ H ₂₀ O ₁₀		
	(3)	C ₁₂ H ₂₄ O ₁₂	(4)	C ₁₂ H ₂₂ O ₁₁		
	Ans	swer (4)				
166.	Detritivores breakdown detritus into smaller particles. This process is called:					
	(1)	Decomposition	(2)	Catabolism		
	(3)	Fragmentation	(4)	Humification		
	Ans	swer (3)				
167.	Under normal physiological conditions in human being every 100 ml of oxygenated blood can deliver ml of O ₂ to the tissues.					
	(1)	10 ml	(2)	2 ml		
	(3)	5 ml	(4)	4 ml		
	Ans	swer (3)				

168. Given below are two statements:

Statement I:

Fatty acids and glycerols cannot be absorbed into the blood.

Statement II:

Specialized lymphatic capillaries called lacteals carry chylomicrons into lymphatic vessels and ultimately into the blood.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (2)

- 169. Which of the following is not the function of conducting part of respiratory system?
 - (1) Provides surface for diffusion of O2 and CO2
 - (2) It clears inhaled air from foreign particles
 - (3) Inhaled air is humidified
 - (4) Temperature of inhaled air is brought to body temperature

Answer (1)

- 170. Identify the microorganism which is responsible for the production of an immunosuppressive molecule cyclosporin A:
 - (1) Streptococcus cerevisiae

(2) Trichoderma polysporum

(3) Clostridium butylicum

(4) Aspergillus niger

Answer (2)

- 171. Regarding Meiosis, which of the statements is incorrect?
 - (1) Four haploid cells are formed at the end of Meiosis-II
 - (2) There are two stages in Meiosis, Meiosis-I and II
 - (3) DNA replication occurs in S phase of Meiosis-II
 - (4) Pairing of homologous chromosomes and recombination occurs in Meiosis-I

Answer (3)

- 172. Which of the following statements are true for spermatogenesis but do not hold true for Oogenesis?
 - (a) It results in the formation of haploid gametes
 - (b) Differentiation of gamete occurs after the completion of meiosis
 - (c) Meiosis occurs continuously in a mitotically dividing stem cell population
 - (d) It is controlled by the Luteinising hormone (LH) and Follicle Stimulating Hormone (FSH) secreted by the anterior pituitary
 - (e) It is initiated at puberty

Choose the most appropriate answer from the options given below:

(1) (b), (c) and (e) only

(2) (c) and (e) only

(3) (b) and (c) only

(4) (b), (d) and (e) only

173.	In which of the following animals, digestive tract has additional chambers like crop and gizzard?						
	(1)	(1) Pavo, Psittacula, Corvus		Corvus, Columba, Chameleon			
	(3)	Bufo, Balaenoptera, Bangarus	(4)	Catla, Columba, Crocodilus			
	Ans	swer (1)					
174.	Breeding crops with higher levels of vitamins and minerals or higher proteins and healthier fats is called						
	(1)	Bio-accumulation	(2)	Bio-magnification			
	(3)	Bio-remediation	(4)	Bio-fortification			
	Ans	swer (4)					
175.	Ider	ntify the asexual reproductive structure associated	d with	Penicillium:			
	(1)	Buds	(2)	Zoospores			
	(3)	Conidia	(4)	Gemmules			
470		swer (3)					
176.		en below are two statements:					
		tement I:					
		striction endonucleases recognise specific sequ uence.	ience	to cut DNA known as palindromic nucleotide			
	Sta	tement II:					
	Restriction endonucleases cut the DNA strand a little away from the centre of the palindromic site.						
	In the light of the above statements, choose the most appropriate answer from the options given below:						
	(1)	Statement I is incorrect but Statement II is corr	ect				
	(2)	Both Statement I and Statement II are correct					
	(3)	(3) Both Statement I and Statement II are incorrect					
	(4)	(4) Statement I is correct but Statement II is incorrect					
	Ans	swer (2)					
177.		n <i>E. Coli</i> strain <i>i</i> gene gets mutated and its productorided with lactose, what will be the outcome?	ct car	not bind the inducer molecule. If growth medium			
	(1)	RNA polymerase will bind the promoter region					
	(2)	Only z gene will get transcribed					
	(3)	z, y, a genes will be transcribed					
	(4)	z, y, a genes will not be translated					
	Ans	swer (4)					
178.	Lipp	pe's loop is a type of contraceptive used as:					
	(1)	Copper releasing IUD	(2)	Cervical barrier			
	(3)	Vault barrier	(4)	Non-Medicated IUD			
	Ans	swer (4)					

- 179. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
 - Assertion (A): All vertebrates are chordates but all chordates are not vertebrates.
 - Reason (R): Notochord is replaced by vertebral column in the adult vertebrates.

In the light of the above statements, choose the most appropriate answer from the option given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

Answer (2)

- 180. Which of the following statements with respect to Endoplasmic Reticulum is incorrect?
 - (1) SER are the sites for lipid synthesis
- (2) RER has ribosomes attached to ER

(3) SER is devoid of ribosomes

(4) In prokaryotes only RER are present

Answer (4)

181. Given below are two statements:

Statement I: Mycoplasma can pass through less than 1 micron filter size.

Statement II: Mycoplasma are bacteria with cell wall.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (4)

- 182. Natural selection where more individuals acquire specific character value other than the mean character value, leads to
 - (1) Random change

(2) Stabilising change

(3) Directional change

(4) Disruptive change

Answer (3)

183. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Osteoporosis is characterised by decreased bone mass and increased chance of fractures.

Reason (R):

Common cause of osteoporosis is increased levels of estrogen.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is correct but (R) is not correct

- 184. Which of the following is **not** a connective tissue?
 - (1) Neuroglia

(2) Blood

(3) Adipose tissue

(4) Cartilage

Answer (1)

- 185. Nitrogenous waste is excreted in the form of pellet or paste by :
 - (1) Pavo

(2) Ornithorhynchus

(3) Salamandra

(4) Hippocampus

Answer (1)

SECTION-B

- 186. Which one of the following statements is correct?
 - (1) Increased ventricular pressure causes closing of the semilunar valves.
 - (2) The atrio-ventricular node (AVN) generates an action potential to stimulate atrial contraction
 - (3) The tricuspid and the bicuspid valves open due to the pressure exerted by the simultaneous contraction of the atria
 - (4) Blood moves freely from atrium to the ventricle during joint diastole.

Answer (4)

- 187. Which of the following statements is not true?
 - (1) Flippers of penguins and dolphins are a pair of homologous organs
 - (2) Analogous structures are a result of convergent evolution
 - (3) Sweet potato and potato is an example of analogy
 - (4) Homology indicates common ancestry

Answer (1)

188. Statements related to human Insulin are given below.

Which statement(s) is/are correct about genetically engineered Insulin?

- (a) Pro-hormone insulin contain extra stretch of C-peptide
- (b) A-peptide and B-peptide chains of insulin were produced separately in *E.coli*, extracted and combined by creating disulphide bond between them.
- (c) Insulin used for treating Diabetes was extracted from Cattles and Pigs.
- (d) Pro-hormone Insulin needs to be processed for converting into a mature and functional hormone.
- (e) Some patients develop allergic reactions to the foreign insulin.

Choose the most appropriate answer from the options given below:

- (1) (c), (d) and (e) only
- (2) (a), (b) and (d) only
- (3) (b) only
- (4) (c) and (d) only

Answer (3)

- 189. Select the incorrect statement with respect to acquired immunity.
 - Acquired immunity is non-specific type of defense present at the time of birth.
 - (2) Primary response is produced when our body encounters a pathogen for the first time.
 - (3) Anamnestic response is elicited on subsequent encounters with the same pathogen.
 - (4) Anamnestic response is due to memory of first encounter.

Answer (1)

- 190. Select the incorrect statement regarding synapses:
 - (1) Impulse transmission across a chemical synapse is always faster than that across an electrical synapse.
 - (2) The membranes of presynaptic and postsynaptic neurons are in close proximity in an electrical synapse.
 - (3) Electrical current can flow directly from one neuron into the other across the electrical synapse.
 - (4) Chemical synapses use neurotransmitters

Answer (1)

- 191. If a colour blind female marries a man whose mother was also colour blind, what are the chances of her progeny having colour blindness?
 - (1) 100%
 - (2) 25%
 - (3) 50%
 - (4) 75%

Answer (1)

- The recombination frequency between the genes a & c is 5%, b & c is 15%, b & d is 9%, a & b is 20%, c & d is 24% and a & d is 29%. What will be the sequence of these genes on a linear chromosome?
 - (1) a, c, b, d
 - (2) a, d, b, c
 - (3) d, b, a, c
 - (4) a, b, c, d

Answer (1)

- 193. Which of the following is a **correct** statement?
 - (1) Mycoplasma have DNA, ribosome and cell wall.
 - (2) Cyanobacteria are a group of autotrophic organisms classified under kingdom Monera.
 - (3) Bacteria are exclusively heterotrophic organisms.
 - (4) Slime moulds are saprophytic organisms classified under Kingdom Monera.

Answer (2)

194. Match List-I with List-II with respect to methods of Contraception and their respective actions.

	List-l		List-II
(a)	Diaphragms	(i)	Inhibit ovulation and Implantation
(b)	Contraceptive Pills	(ii)	Increase phagocytosis of sperm within Uterus
(c)	Intra Uterine Devices	(iii)	Absence of Menstrual cycle and ovulation following parturition
(d)	Lactational Amenorrhea	(iv)	They cover the cervix blocking the entry of sperms

Choose the correct answer from the options given below:

- (1) (a) (iii), (b) (ii), (c) (i), (d) (iv)
- (2) (a) (iv), (b) (i), (c) (iii), (d) (ii)
- (3) (a) (iv), (b) (i), (c) (ii), (d) (iii)
- (4) (a) (ii), (b) (iv), (c) (i), (d) (iii)

Answer (3)

195. Which of the following are **not** the effects of Parathyroid hormone?

- (a) Stimulates the process of bone resorption
- (b) Decreases Ca2+ level in blood
- (c) Reabsorption of Ca²⁺ by renal tubules
- (d) Decreases the absorption of Ca2+ from digested food
- (e) Increases metabolism of carbohydrates

Choose the most appropriate answer from the options given below:

(1) (b) and (c) only

(2) (a) and (c) only

(3) (b), (d) and (e) only

(4) (a) and (e) only

Answer (3)

196. Match List-II with List-II

	List-l		List-II
(a)	Bronchioles	(i)	Dense Regular Connective Tissue
(b)	Goblet Cell	(ii)	Loose Connective Tissue
(c)	Tendons	(iii)	Glandular Tissue
(d)	Adipose Tissue	(iv)	Ciliated Epithelium

Choose the correct answer from the options given below:

- (1) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (2) (a) (iv), (b) (iii), (c) (i), (d) (ii)
- (3) (a) (i), (b) (ii), (c) (iii), (d) (iv)
- (4) (a) (ii), (b) (i), (c) (iv), (d) (iii)

Answer (2)

197. Given below are two statements:

Statements I:

In a scrubber the exhaust from the thermal plant is passed through the electric wires to charge the dust particles.

Statement II:

Particulate matter (PM 2.5) cannot be removed by scrubber but can be removed by an electrostatic precipitator.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both Statement I and Statement II are incorrect
- (4) Statement I is correct but Statement II is incorrect

Answer (1)

198. Ten *E.coli* cells with ¹⁵N - dsDNA are incubated in medium containing ¹⁴N nucleotide. After 60 minutes, how many *E.coli* cells will have DNA totally free from ¹⁵N?

(1) 80 cells

(2) 20 cells

(3) 40 cells

(4) 60 cells

Answer (4)

199. Which of the following is not a desirable feature of a cloning vector?

(1) Presence of two or more recognition sites

(2) Presence of origin of replication

(3) Presence of a marker gene

(4) Presence of single restriction enzyme site

Answer (1)

200. Match List-I with List-II

	List-l (Biological Molecules)		List-II (Biological functions)
(a)	Glycogen	(i)	Hormone
(b)	Globulin	(ii)	Biocatalyst
(c)	Steroids	(iii)	Antibody
(d)	Thrombin	(iv)	Storage product

Choose the correct answer from the options given below:

- (1) (a) (iv), (b) (iii), (c) (i), (d) (ii)
- (2) (a) (iii), (b) (ii), (c) (iv), (d) (i)
- (3) (a) (iv), (b) (ii), (c) (i), (d) (iii)
- (4) (a) (ii), (b) (iv), (c) (iii), (d) (i)