
SECTION-A

1. The graph which shows the variation of the de Broglie wavelength (λ) of a particle and its associated momentum (p) is

Answer (4)

- 2. As the temperature increases, the electrical resistance
 - (1) Increases for both conductors and semiconductors
 - (2) Decreases for both conductors and semiconductors
 - (3) Increases for conductors but decreases for semiconductors
 - (4) Decreases for conductors but increases for semiconductors

Answer (3)

- 3. Let T_1 and T_2 be the energy of an electron in the first and second excited states of hydrogen atoms, respectively. According to the Bohr's model of an atom, the ratio $T_1 : T_2$ is
 - (1) 1:4

(2) 4:1

(3) 4:9

(4) 9:4

Answer (4)

- 4. Two objects of mass 10 kg and 20 kg respectively are connected to the two ends of a rigid rod of length 10 m with negligible mass. The distance of the center of mass of the system from the 10 kg mass is
 - (1) $\frac{10}{3}$ m

(2) $\frac{20}{3}$ m

(3) 10 m

(4) 5 m

Answer (2)

5. The ratio of the distances travelled by a freely falling body in the 1st, 2nd, 3rd and 4th second

(1) 1:2:3:4

(2) 1:4:9:16

(3) 1:3:5:7

(4) 1:1:1:1

- 6. The ratio of the radius of gyration of a thin uniform disc about an axis passing through its centre and normal to its plane to the radius of gyration of the disc about its diameter is
 - (1) 2:1

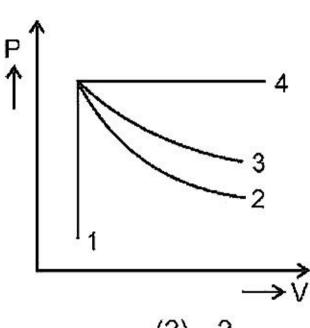
(2) $\sqrt{2}:1$

(3) 4:1

(4) 1: $\sqrt{2}$

Answer (2)

- 7. The angular speed of a fly wheel moving with uniform angular acceleration changes from 1200 rpm to 3120 rpm in 16 seconds. The angular acceleration in rad/s² is
 - (1) 2π


(2) 4π

(3) 12π

(4) 104π

Answer (2)

8. An ideal gas undergoes four different processes from the same initial state as shown in the figure below. Those processes are adiabatic, isothermal, isobaric and isochoric. The curve which represents the adiabatic process among 1, 2, 3 and 4 is

- (1) 1
- (3) 3

- (2)
- (4)

Answer (2)

- 9. Two hollow conducting spheres of radii R_1 and R_2 ($R_1 >> R_2$) have equal charges. The potential would be
 - (1) More on bigger sphere

(2) More on smaller sphere

(3) Equal on both the spheres

(4) Dependent on the material property of the sphere

Answer (2)

10. When light propagates through a material medium of relative permittivity ε_r and relative permeability μ_r , the velocity of light, v is given by (c-velocity of light in vacuum)

(1)
$$v = c$$

$$(2) v = \sqrt{\frac{\mu_r}{\varepsilon_r}}$$

(3)
$$v = \sqrt{\frac{\varepsilon_r}{\mu_r}}$$

$$(4) V = \frac{c}{\sqrt{\varepsilon_c \mu_c}}$$

Answer (4)

- 11. A long solenoid of radius 1 mm has 100 turns per mm. If 1 A current flows in the solenoid, the magnetic field strength at the centre of the solenoid is
 - (1) $6.28 \times 10^{-2} \text{ T}$

(2) $12.56 \times 10^{-2} \text{ T}$

(3) 12.56 × 10⁻⁴ T

(4) $6.28 \times 10^{-4} \text{ T}$

Answer (2)

- 12. The peak voltage of the ac source is equal to
 - (1) The value of voltage supplied to the circuit
- (2) The rms value of the ac source
- (3) $\sqrt{2}$ times the rms value of the ac source
- (4) $1/\sqrt{2}$ times the rms value of the ac source

- 13. An electric lift with a maximum load of 2000 kg (lift + passengers) is moving up with a constant speed of 1.5 ms^{-1} . The frictional force opposing the motion is 3000 N. The minimum power delivered by the motor to the lift in watts is : $(g = 10 \text{ m s}^{-2})$
 - (1) 23000

(2) 20000

(3) 34500

(4) 23500

Answer (3)

- 14. In a Young's double slit experiment, a student observes 8 fringes in a certain segment of screen when a monochromatic light of 600 nm wavelength is used. If the wavelength of light is changed to 400 nm, then the number of fringes he would observe in the same region of the screen is
 - (1) 6

(2) 8

(3) 9

(4) 12

Answer (4)

15. A copper wire of length 10 m and radius $\left(\frac{10^{-2}}{\sqrt{\pi}}\right)$ m has electrical resistance of 10 Ω . The current density in

the wire for an electric field strength of 10 (V/m) is

(1) 10⁴ A/m²

(2) 10⁶ A/m²

(3) 10⁻⁵ A/m²

(4) 10⁵ A/m²

Answer (4)

- 16. The dimensions [MLT-2A-2] belong to the
 - (1) Magnetic flux

(2) Self inductance

(3) Magnetic permeability

(4) Electric permittivity

Answer (3)

- 17. If the initial tension on a stretched string is doubled, then the ratio of the initial and final speeds of a transverse wave along the string is
 - (1) 1:1

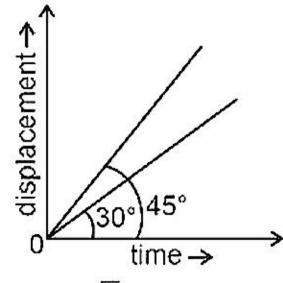
(2) $\sqrt{2}:1$

(3) $1:\sqrt{2}$

(4) 1:2

Answer (3)

- 18. In half wave rectification, if the input frequency is 60 Hz, then the output frequency would be
 - (1) Zero


(2) 30 Hz

(3) 60 Hz

(4) 120 Hz

Answer (3)

19. The displacement-time graphs of two moving particles make angles of 30° and 45° with the x-axis as shown in the figure. The ratio of their respective velocity is

(1) $\sqrt{3}:1$

(2) 1:1

(3) 1:2

(4) 1: $\sqrt{3}$

20.	Alexand Alastina Prices	are loop of side 1 m and resistan		Company of the state of the sta		Property and the Annual Control of the Control of t
	€ 65 - 67 - 67 - 67 - 67 - 67 - 67 - 67 -	ndicular to the direction of magnet 2 weber	ic neid	i, the magne (2)	0.5 weber	ie loop is
		1 weber		(4)	Zero weber	
	ia. Ei	rer (2)		(1)	ZOIO WODEI	
21.		nergy that will be ideally radiated b	N 2 10	n kW transr	nitter in 1 hour ie	
۷۱.		36 × 10 ⁷ J	Jy a it	JO KW EIGHSI	mitter in Thouris	
	3 6	36 × 10 ⁴ J				
		36 × 10⁵ J				
	(4)	1 × 10 ⁵ J				
	Answ	/er (1)				
22.		dy of mass 60 g experiences a gitude of the gravitational field inten	50 m		1935	placed at a particular point. The
	(1)	0.05 N/kg		(2)	50 N/kg	
	(3)	20 N/kg		(4)	180 N/kg	
	Answ	rer (2)				
23.	Match	List-I with List-II				
		List-l		ı	_ist-ll	
		(Electromagnetic waves)		(Wav	relength)	
	(a)	AM radio waves	(i)	10 ⁻¹⁰ m	8	
	(b)	Microwaves	(ii)	10 ² m		
	(c)	Infrared radiations	(iii)	10⁻² m		
	(d)	X-rays	(iv)	10⁻⁴ m		
	Choo	se the correct answer from the opt	ions gi	iven below		
	(1) ((a) - (iv), (b) - (iii), (c) - (ii), (d) - (i)				
	A A S	(a) - (iii), (b) - (ii), (c) - (i), (d) - (iv)				
		(a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)				
		(a) - (ii), (b) - (iii), (c) - (iv), (d) - (i)				
0.4		/er (4)				
24.	fragm	ell of mass <i>m</i> is at rest initially. It elements having equal mass fly off alcologister) fragment is	E.			- DATABATE DATE OF STATE OF ST
	(1)	V		(2)	$\sqrt{2}v$	
	(3)	2√2v		(4)	$3\sqrt{2}v$	
	Answ	rer (3)				
25.		onvex lens has radii of curvature, 2 r of the lens is	0 cm e	each. If the re	efractive index of	the material of the lens is 1.5, the
	(1)	+2 D		(2)	+20 D	
	(3)			(4)	Infinity	
	Answ	rer (3)				

Given below are two statements

Statement I: Biot-Savart's law gives us the expression for the magnetic field strength of an infinitesimal current element (IdI) of a current carrying conductor only.

Statement II: Biot-Savart's law is analogous to Coulomb's inverse square law of charge q, with the former being related to the field produced by a scalar source, IdI while the latter being produced by a vector source, q.

In light of above statements choose the most appropriate answer from the options given below

- Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect
- Statement I is correct and Statement II is incorrect
- Statement I is incorrect and Statement II is correct

Answer (3)

In the given nuclear reaction, the element X is

$$^{22}_{11}$$
Na $\rightarrow X + e^+ + v$

(1) $^{23}_{11}$ Na

²³Ne

(3) $^{22}_{10}Ne$

²²Mg

Answer (3)

- Plane angle and solid angle have
 - (1) Units but no dimensions

Dimensions but no units

No units and no dimensions

Both units and dimensions

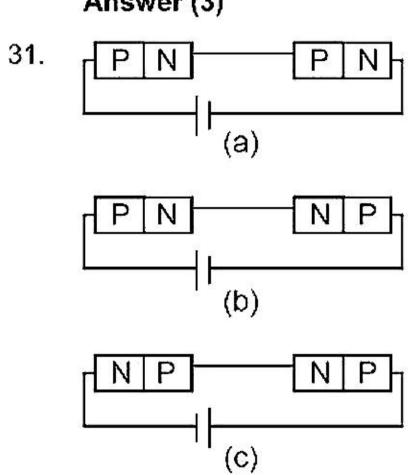
Answer (1)

- The angle between the electric lines of force and the equipotential surface is
 - (1) 0°

45°

(3) 90°

180° (4)

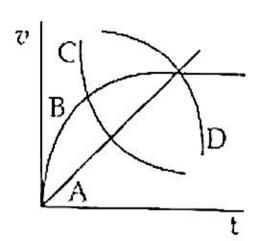

Answer (3)

- A light ray falls on a glass surface of refractive index $\sqrt{3}$, at an angle 60°. The angle between the refracted and reflected rays would be
 - (1) 30°

60°

(3) 90°

(4)120°



In the given circuits (a), (b) and (c), the potential drop across the two p-n junctions are equal in

- (1) Circuit (a) only
- (2) Circuit (b) only
- (3) Circuit (c) only
- (4) Both circuits (a) and (c)

Answer (4)

32. A spherical ball is dropped in a long column of a highly viscous liquid. The curve in the graph shown, which represents the speed of the ball (v) as a function of time (t) is

- (1) A
- (3) C

- (2) B
- (4) D

Answer (2)

- 33. Two resistors of resistance, 100 Ω and 200 Ω are connected in parallel in an electrical circuit. The ratio of the thermal energy developed in 100 Ω to that in 200 Ω in a given time is
 - (1) 1:2

(2) 2:1

(3) 1:4

(4) 4:1

Answer (2)

When two monochromatic lights of frequency, v and $\frac{v}{2}$ are incident on a photoelectric metal, their stopping

potential becomes $\frac{V_s}{2}$ and V_s respectively. The threshold frequency for this metal is

(1) 2v

(2) 3v

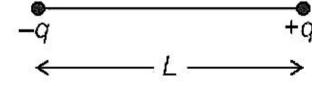
(3) $\frac{2}{3}$

(4) $\frac{3}{2}v$

Answer (4*)

- 35. If a soap bubble expands, the pressure inside the bubble
 - (1) Decreases

(2) Increases


(3) Remains the same

(4) Is equal to the atmospheric pressure

Answer (1)

SECTION-B

36. Two point charges -q and +q are placed at a distance of L, as shown in the figure.

The magnitude of electric field intensity at a distance R(R >> L) varies as:

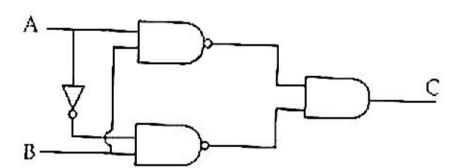
(1) $\frac{1}{R^2}$

(2) $\frac{1}{R^3}$

(3) $\frac{1}{R^4}$

(4) $\frac{1}{R^6}$

- 37. The area of a rectangular field (in m²) of length 55.3 m and breadth 25 m after rounding off the value for correct significant digits is
 - (1) 138×10^{1}


(2) 1382

(3) 1382.5

(4) 14×10^2

Answer (4)

38.

The truth table for the given logic circuit is

	A	В	C
	0	0	0
(1)	0	1	1
	1	0	1
	1	0 1 0 1	0
	Λ	_	l C

Answer (3)

39. Given below are two statements: One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): The stretching of a spring is determined by the shear modulus of the material of the spring.

Reason (R): A coil spring of copper has more tensile strength than a steel spring of same dimensions.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are true and (R) is not the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

Answer (3)

- 40. From Ampere's circuital law for a long straight wire of circular cross-section carrying a steady current, the variation of magnetic field in the inside and outside region of the wire is
 - (1) Uniform and remains constant for both the regions.
 - (2) A linearly increasing function of distance upto the boundary of the wire and then linearly decreasing for the outside region.
 - (3) A linearly increasing function of distance r upto the boundary of the wire and then decreasing one with $\frac{1}{r}$ dependence for the outside region.
 - (4) A linearly decreasing function of distance upto the boundary of the wire and then a linearly increasing one for the outside region.

- A series LCR circuit with inductance 10 H, capacitance 10 μF , resistance 50 Ω is connected to an ac source of voltage, $V = 200\sin(100t)$ volt. If the resonant frequency of the LCR circuit is v_0 and the frequency of the ac source is v, then
 - (1) $v_0 = v = 50 \text{ Hz}$

(2) $v_0 = v = \frac{50}{\pi} \text{ Hz}$

(3) $v_0 = \frac{50}{\pi} \text{ Hz}, \ v = 50 \text{ Hz}$

(4) $v = 100 \text{ Hz}; v_0 = \frac{100}{\pi} \text{ Hz}$

Answer (2)

Match List-I with List-II 42.

	List-I		List-II
(a)	Gravitational constant (G)	(i)	[L ² T ⁻²]
(b)	Gravitational potential energy	(ii)	$[M^{-1}L^3T^{-2}]$
(c)	Gravitational potential	(iii)	[LT ⁻²]
(d)	Gravitational intensity	(iv)	[ML ² T ⁻²]

Choose the correct answer from the options given below

- (1) (a) (ii), (b) (i), (c) (iv), (d) (iii) (2) (a) (ii), (b) (iv), (c) (i), (d) (iii)
- $(3) \quad (a) (ii), (b) (iv), (c) (iii), (d) (i) \\ \qquad (4) \quad (a) (iv), (b) (ii), (c) (i), (d) (iii) \\$

Answer (2)

- Two pendulums of length 121 cm and 100 cm start vibrating in phase. At some instant, the two are at their mean position in the same phase. The minimum number of vibrations of the shorter pendulum after which the two are again in phase at the mean position is:
 - 11 (1)

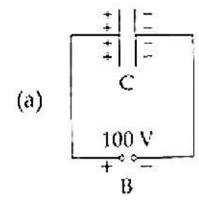
(2)9

(3) 10

(4) 8

Answer (1)

- A big circular coil of 1000 turns and average radius 10 m is rotating about its horizontal diameter at 2 rad s⁻¹. If the vertical component of earth's magnetic field at that place is 2 × 10⁻⁵ T and electrical resistance of the coil is 12.56 Ω , then the maximum induced current in the coil will be
 - (1) 0.25 A


(2) 1.5 A

(3) 1 A

(4)2 A

Answer (3)

A capacitor of capacitance C = 900 pF is charged fully by 100 V battery B as shown in figure (a). Then it is disconnected from the battery and connected to another uncharged capacitor of capacitance C = 900 pF as shown in figure (b). The electrostatic energy stored by the system (b) is

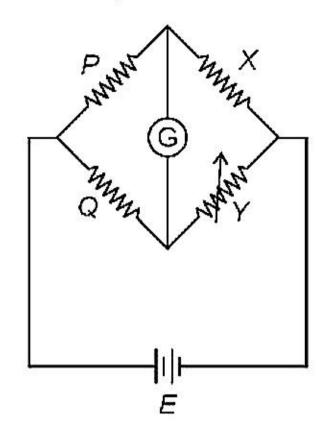
- $4.5 \times 10^{-6} \text{ J}$

 $3.25 \times 10^{-6} \text{ J}$

2.25 × 10⁻⁶ J

 $1.5 \times 10^{-6} \text{ J}$ (4)

- 46. A nucleus of mass number 189 splits into two nuclei having mass number 125 and 64. The ratio of radius of two daughter nuclei respectively is
 - (1) 1:1


(2) 4:5

(3) 5:4

(4) 25:16

Answer (3)

47. A wheatstone bridge is used to determine the value of unknown resistance X by adjusting the variable resistance Y as shown in the figure. For the most precise measurement of X, the resistances P and Q

- (1) Should be approximately equal to 2X
- (2) Should be approximately equal and are small
- (3) Should be very large and unequal
- (4) Do not play any significant role

Answer (2)

- The volume occupied by the molecules contained in 4.5 kg water at STP, if the intermolecular forces vanish away is
 - (1) $5.6 \times 10^6 \,\mathrm{m}^3$

(2) $5.6 \times 10^3 \,\mathrm{m}^3$

(3) $5.6 \times 10^{-3} \text{ m}^3$

(4) 5.6 m³

Answer (4)

- A ball is projected with a velocity, 10 ms⁻¹, at an angle of 60° with the vertical direction. Its speed at the highest point of its trajectory will be
 - (1) Zero

(2) $5\sqrt{3} \text{ ms}^{-1}$

(3) 5 ms⁻¹

(4) 10 ms⁻¹

Answer (2)

- Two transparent media A and B are separated by a plane boundary. The speed of light in those media are 1.5×10^8 m/s and 2.0×10^8 m/s, respectively. The critical angle for a ray of light for these two media is
 - (1) $\sin^{-1}(0.500)$

(2) $\sin^{-1}(0.750)$

(3) tan-1 (0.500)

(4) $tan^{-1}(0.750)$

SECTION-A

- 51. Gadolinium has a low value of third ionisation enthalpy because of
 - (1) small size

(2) high exchange enthalpy

(3) high electronegativity

(4) high basic character

Answer (2)

Which one is not correct mathematical equation for Dalton's Law of partial pressure? Here p = total pressure of gaseous mixture

(1) $p = p_1 + p_2 + p_3$

(2)
$$p = n_1 \frac{RT}{V} + n_2 \frac{RT}{V} + n_3 \frac{RT}{V}$$

(3) $p_i = \chi_i p_i$

where p_i = partial pressure of ith gas χ_i = mole fraction of ith gas in gaseous mixture

 $(4) \quad p_i = \chi_i p_i^*,$

where χ_i = mole fraction of ith gas in gaseous mixture

 p_i° = pressure of ith gas in pure state

Answer (4)

53. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

In a particular point defect, an ionic solid is electrically neutral, even if few of its cations are missing from its unit cells.

Reason (R):

In an ionic solid, Frenkel defect arises due to dislocation of cation from its lattice site to interstitial site, maintaining overall electrical neutrality.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) (A) is correct but (R) is not correct
- (4) (A) is not correct but (R) is correct

Answer (2)

- The pH of the solution containing 50 mL each of 0.10 M sodium acetate and 0.01 M acetic acid is [Given pK_a of CH₃COOH = 4.57]
 - (1) 5.57

(2) 3.57

(3) 4.57

(4) 2.57

Answer (1)

- 55. Identify the incorrect statement from the following
 - (1) Alkali metals react with water to form their hydroxides.
 - (2) The oxidation number of K in KO₂ is +4.
 - (3) Ionisation enthalpy of alkali metals decreases from top to bottom in the group.
 - (4) Lithium is the strongest reducing agent among the alkali metals.

Answer (2)

56. Given below are two statements

Statement I:

The acidic strength of monosubstituted nitrophenol is higher than phenol because of electron withdrawing nitro group.

Statement II:

o-nitrophenol, m-nitrophenol and p-nitrophenol will have same acidic strength as they have one nitro group attached to the phenolic ring.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Answer (3)

What mass of 95% pure CaCO₃ will be required to neutralise 50 mL of 0.5 M HCl solution according to the following reaction?

$$CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + CO_{2(g)} + 2H_2O_{(l)}$$

[Calculate upto second place of decimal point]

(1) 1.25 g

(2) 1.32 g

(3) 3.65 g

(4) 9.50 g

Answer (2)

- 58. The IUPAC name of an element with atomic number 119 is
 - (1) ununennium

(2) unnilennium

(3) unununnium

(4) ununoctium

Answer (1)

Sol. IUPAC name of element: 119: ununennium

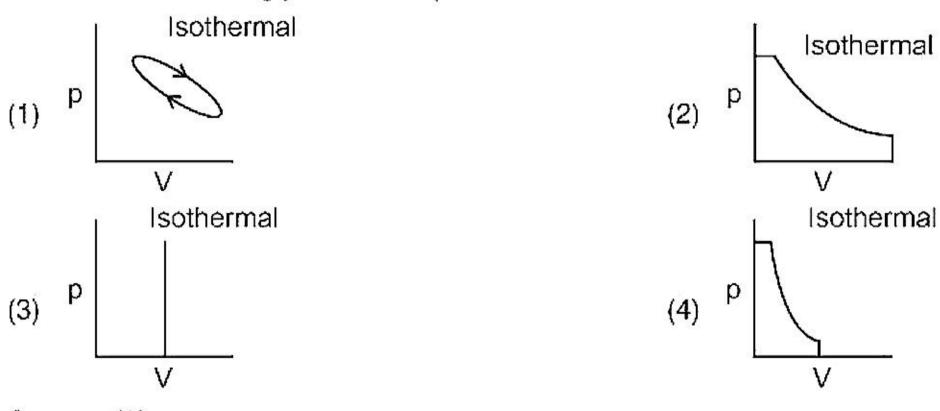
- 59. Choose the correct statement:
 - (1) Diamond and graphite have two dimensional network.
 - (2) Diamond is covalent and graphite is ionic.
 - (3) Diamond is sp³ hybridised and graphite is sp² hybridized.
 - (4) Both diamond and graphite are used as dry lubricants.

60. Given below are two statements

Statement I:

In the coagulation of a negative sol, the flocculating power of the three given ions is in the order $Al^{3+} > Ba^{2+} > Na^{+}$

Statement II:


In the coagulation of a positive sol, the flocculating power of the three given salts is in the order $NaCl > Na_2SO_4 > Na_3PO_4$

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Answer (3)

61. Which of the following p-V curve represents maximum work done?

Answer (2)

62. Given below are two statements

Statement I:

Primary aliphatic amines react with HNO2 to give unstable diazonium salts.

Statement II:

Primary aromatic amines react with HNO₂ to form diazonium salts which are stable even above 300 K. In the light of the above statements, choose the most **appropriate** answer from the options given below

- Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Answer (3)

- 63. Which amongst the following is incorrect statement?
 - (1) The bond orders of O_2^+ , O_2 , O_2^- and O_2^{2-} are 2.5, 2, 1.5 and 1, respectively
 - (2) C_2 molecule has four electrons in its two degenerate π molecular orbitals
 - (3) H₂ ion has one electron
 - (4) O_2^- ion is diamagnetic

64. $RMgX + CO_2 \xrightarrow{dry} Y \xrightarrow{H_3O'} \rightarrow RCOOH$

What is Y in the above reaction?

(1) RCOO-Mg+X

(2) R₃CO⁻Mg⁺X

(3) RCOO-X+

(4) (RCOO)₂Mg

Answer (1)

- 65. Which statement regarding polymers is not correct?
 - (1) Elastomers have polymer chains held together by weak intermolecular forces
 - (2) Fibers possess high tensile strength
 - (3) Thermoplastic polymers are capable of repeatedly softening and hardening on heating and cooling respectively
 - (4) Thermosetting polymers are reusable

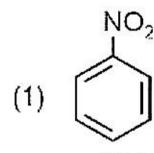
Answer (4)

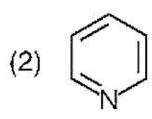
66. Given below are half cell reactions:

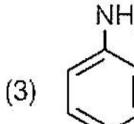
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$E_{Mn^{2+}/MnO_4^-}^9 = -1.510 \text{ V}$$

$$\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$$


$$E_{O_2/H_2O}^9 = +1.223 \text{ V}$$


Will the permanganate ion, MnO₄ liberate O₂ from water in the presence of an acid?


- (1) Yes, because $E_{cell}^{\circ} = +0.287 \text{ V}$
- (2) No, because $E_{cell}^{\circ} = -0.287 \text{ V}$
- (3) Yes, because $E_{cell}^{\circ} = + 2.733 \text{ V}$
- (4) No, because $E_{cell}^{\circ} = -2.733 \text{ V}$

Answer (1)

67. The Kjeldahl's method for the estimation of nitrogen can be used to estimate the amount of nitrogen in which one of the following compounds?

(4) N = N

Answer (3)

- 68. The incorrect statement regarding enzymes is
 - (1) Enzymes are biocatalysts.
 - (2) Like chemical catalysts enzymes reduce the activation energy of bio processes.
 - (3) Enzymes are polysaccharides.
 - (4) Enzymes are very specific for a particular reaction and substrate.

69. The IUPAC name of the complex-

[Ag(H₂O)₂][Ag(CN)₂] is:

- (1) dicyanidosilver(II) diaquaargentate(II)
- (2) diaquasilver(II) dicyanidoargentate(II)
- (3) dicyanidosilver(I) diaquaargentate(I)
- (4) diaquasilver(I) dicyanidoargentate(I)

Answer (4)

70. Match List-II with List-II.

List-I

(Drug class)

List-II

(Drug molecule)

- (a) Antacids
- b) Antihistamines
- (c) Analgesics
- (d) Antimicrobials

- (i) Salvarsan(ii) Morphine
- (iii) Cimetidine
- (iv) Seldane

Choose the correct answer from the options given below:

- (1) (a) (iii), (b) (ii), (c) (iv), (d) (i)
- (2) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (3) (a) (i), (b) (iv), (c) (ii), (d) (iii)
- (4) (a) (iv), (b) (iii), (c) (i), (d) (ii)

Answer (2)

- 71. Amongst the following which one will have maximum 'lone pair lone pair' electron repulsions?
 - (1) CIF₃

(2) IF₅

(3) SF₄

(4) XeF₂

Answer (4)

72. At 298 K, the standard electrode potentials of Cu²⁺ / Cu, Zn²⁺ / Zn, Fe²⁺ / Fe and Ag⁺ / Ag are 0.34 V, –0.76 V, –0.44 V and 0.80 V, respectively.

On the basis of standard electrode potential, predict which of the following reaction cannot occur?

- (1) $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$
- (2) $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$
- (3) $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$
- (4) $2CuSO_4(aq) + 2Ag(s) \rightarrow 2Cu(s) + Ag_2SO_4(aq)$

Answer (4)

- 73. Identify the incorrect statement from the following.
 - (1) All the five 5d orbitals are different in size when compared to the respective 4d orbitals.
 - (2) All the five 4d orbitals have shapes similar to the respective 3d orbitals.
 - (3) In an atom, all the five 3d orbitals are equal in energy in free state.
 - (4) The shapes of d_{xy} , d_{yz} and d_{zx} orbitals are similar to each other; and $d_{x^2-y^2}$ and d_{z^2} are similar to each other.

- In one molal solution that contains 0.5 mole of a solute, there is 74.
 - 500 mL of solvent

500 g of solvent

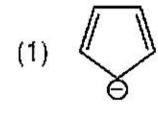
100 mL of solvent

1000 g of solvent (4)

Answer (2)

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R). 75.

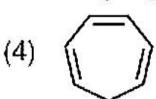
Assertion (A): ICI is more reactive than I2.


Reason (R): I-CI bond is weaker than I-I bond.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Both (A) and (R) are correct and (R) is the correct explanation of (A).
- Both (A) and (R) are correct but (R) is not the correct explanation of (A).
- (A) is correct but (R) is not correct
- (4) (A) is not correct but (R) is correct

Answer (1)


Which compound amongst the following is **not** an aromatic compound? 76.

Answer (4)

Given below are two statements 77.

Statement I

The boiling points of the following hydrides of group 16 elements increases in the order –

 $H_2O < H_2S < H_2Se < H_2Te$

Statement II

The boiling points of these hydrides increase with increase in molar mass.

In the light of the above statements, choose the most appropriate answer from the options given below:

- Both Statement I and Statement II are correct
- Both Statement I and Statement II are incorrect
- Statement I is correct but Statement II is incorrect
- Statement I is incorrect but Statement II is correct

Answer (2)

Match List-II with List-II 78.

	121	
-	131	Ġ

- Li (a)
- (b) Na KOH (c)
- Cs (d)

List-II

- absorbent for carbon dioxide
- electrochemical cells
- coolant in fast breeder reactors
- photoelectric cell

Choose the correct answer from the options given below:

- (1) (a) (iv), (b) (i), (c) (iii), (d) (ii)
- (2) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (3) (a) (i), (b) (iii), (c) (iv), (d) (ii)
- (4) (a) (ii), (b) (iii), (c) (i), (d) (iv)

- 79. Which of the following sequence of reactions is suitable to synthesize chlorobenzene?
 - (1) Benzene, Cl₂, anhydrous FeCl₃
 - (2) Phenol, NaNO2, HCI, CuCl

Answer (1)

80. Given below are two statements:

Statement I: The boiling points of aldehydes and ketones are higher than hydrocarbons of comparable molecular masses because of weak molecular association in aldehydes and ketones due to dipole interactions.

Statement II: The boiling points of aldehydes and ketones are lower than the alcohols of similar molecular masses due to the absence of H-bonding.

List - II

In the light of the above statements, choose the most appropriate answer from the given below

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (1)

81. Match List-I with List-II.

List - I

	(Products formed)	(Rea	action of carbonyl compound with)
(a)	Cyanohydrin	(i)	NH ₂ OH
(b)	Acetal	(ii)	RNH ₂
(c)	Schiff's base	(iii)	alcohol
(d)	Oxime	(iv)	HCN

Choose the correct answer from the options given below

- (1) (a) (iii), (b) (iv), (c) (ii), (d) (i)
- (2) (a) (ii), (b) (iii), (c) (iv), (d) (i)
- (3) (a) (i), (b) (iii), (c) (ii), (d) (iv)
- (4) (a) -(iv), (b) -(iii), (c) -(ii), (d) -(i)

Answer (4)

- 82. The incorrect statement regarding chirality is
 - (1) S_N1 reaction yields 1:1 mixture of both enantiomers
 - (2) The product obtained by S_N2 reaction of haloalkane having chirality at the reactive site shows inversion of configuration
 - (3) Enantiomers are superimposable mirror images on each other
 - (4) A racemic mixture shows zero optical rotation

Match List-II with List-II. 83.

List - I

(Hydrides)

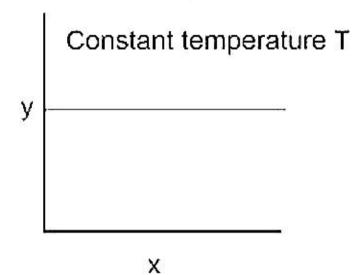
List - II

(Nature)

- (a) MgH₂
- GeH₄ (b)
- B_2H_6
- (d)HF

- Electron precise
- Electron deficient
- Electron rich (iii)
- (iv)Ionic

Choose the correct answer from the options given below


- (1) (a) (iv), (b) (i), (c) (ii), (d) (iii)
- (2) (a) (iii), (b) (i), (c) (ii), (d) (iv)
- (3) (a) (i), (b) (ii), (c) (iv), (d) (iii)
- (4) (a) (ii), (b) (iii), (c) (iv), (d) (i)

Answer (1)

- Which of the following statement is not correct about diborane? 84.
 - There are two 3-centre-2-electron bonds.
 - The four terminal B-H bonds are two centre two electron bonds.
 - The four terminal Hydrogen atoms and the two Boron atoms lie in one plane.
 - Both the Boron atoms are sp² hybridised.

Answer (4)

The given graph is a representation of kinetics of a reaction. 85.

The y and x axes for zero and first order reactions, respectively are

- zero order (y = concentration and x = time), first order (y = $t_{\frac{1}{2}}$ and x = concentration)
- zero order (y = concentration and x = time), first order (y = rate constant and x = concentration)
- zero order (y = rate and x = concentration), first order (y = t% and x = concentration)
- zero order (y = rate and x = concentration), first order (y = rate and x = $t_{1/2}$)

Answer (3)

SECTION-B

Match List-I with List-II. 86.

List-I

List-II

(Ores)

(Composition)

- Haematite (a)
- Fe₃O₄ (i)
- Magnetite
- ZnCO₃ (ii)
- Calamine

Fe₂O₃ (iii)

(d)Kaolinite

(b)

(iv) [Al₂(OH)₄Si₂O₅]

Choose the correct answer from the options given below:

- (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

(a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

(4)(a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)

87. A 10.0 L flask contains 64 g of oxygen at 27° C. (Assume O₂ gas is behaving ideally). The pressure inside the flask in bar is (Given R = 0.0831 L bar K⁻¹ mol⁻¹)

(1) 2.5

(2) 498.6

(3) 49.8

(4) 4.9

Answer (4)

88. For a first order reaction A \rightarrow Products, initial concentration of A is 0.1 M, which becomes 0.001 M after 5 minutes. Rate constant for the reaction in min⁻¹ is

(1) 1.3818

(2) 0.9212

(3) 0.4606

(4) 0.2303

Answer (2)

89. The order of energy absorbed which is responsible for the color of complexes

(A) $[Ni(H_2O)_2(en)_2]^{2+}$

(B) [Ni(H₂O)₄(en)]²⁺ and

(C) $[Ni(en)_3]^{2+}$

is

(1) (A) > (B) > (C)

(2) (C) > (B) > (A)

(3) (C) > (A) > (B)

(4) (B) > (A) > (C)

Answer (3)

90. $3O_2(g) \rightleftharpoons 2O_3(g)$

for the above reaction at 298 K, K_C is found to be 3.0×10^{-59} . If the concentration of O_2 at equilibrium is 0.040 M then concentration of O_3 in M is

(1) 4.38×10^{-32}

(2) 1.9×10^{-63}

 $(3) \quad 2.4 \times 10^{31}$

(4) 1.2×10^{21}

Answer (1)

91. Find the emf of the cell in which the following reaction takes place at 298 K

 $Ni(s) \div 2Ag^{+}(0.001 M) \rightarrow Ni^{2+}(0.001 M) + 2Ag(s)$

(Given that $E_{cell}^{\circ} = 10.5 \text{ V}, \frac{2.303 \text{ RT}}{F} = 0.059 \text{ at } 298 \text{ K}$)

(1) 1.0385 V

(2) 1.385 V

(3) 0.9615 V

(4) 1.05 V

Answer (NA)

92. Which one of the following is not formed when acetone reacts with 2-pentanone in the presence of dilute NaOH followed by heating?

Answer (2)

93. The correct IUPAC name of the following compound is

- (1) 1-bromo-5-chloro-4-methylhexan-3-ol
- (2) 6-bromo-2-chloro-4-methythexan-4-ol
- (3) 1-bromo-4-methyl-5-chlorohexan-3-ol
- (4) 6-bromo-4-methyl-2-chlorohexan-4-ol

Answer (1)

- 94. If radius of second Bohr orbit of the He+ ion is 105.8 pm, what is the radius of third Bohr orbit of Li²⁺ ion?
 - (1) 158.7 pm

(2) 15.87 pm

(3) 1.587 pm

(4) 158.7 Å

Answer (1)

- 95. Compound X on reaction with O_3 followed by Zn/H_2O gives formaldehyde and 2-methyl propanal as products. The compound X is
 - (1) 3-Methylbut-1-ene
 - (2) 2-Methylbut-1-ene
 - (3) 2-Methylbut-2-ene
 - (4) Pent-2-ene

Answer (1)

- 96. In the neutral or faintly alkaline medium, KMnO₄ oxidises iodide into iodate. The change in oxidation state of manganese in this reaction is from
 - (1) +7 to +4

(2) +6 to +4

(3) +7 to +3

(4) +6 to +5

Answer (1)

97. The pollution due to oxides of sulphur gets enhanced due to the presence of:

- (a) particulate matter
- (b) ozone
- (c) hydrocarbons
- (d) hydrogen peroxide

Choose the most appropriate answer from the options given below:

(1) (a), (d) only

(2) (a), (b), (d) only

(3) (b), (c), (d) only

(4) (a), (c), (d) only

Answer (2)

98. Given below are two statements:

Statement I:

In Lucas test, primary, secondary and tertiary alcohols are distinguished on the basis of their reactivity with conc. HCl + ZnCl₂, known as Lucas Reagent.

Statement II:

Primary alcohols are most reactive and immediately produce turbidity at room temperature on reaction with Lucas Reagent.

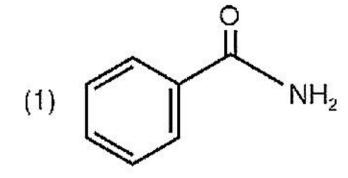
In the light of the above statements, choose the most appropriate answer from the options given below:

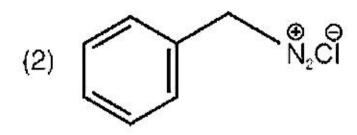
- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

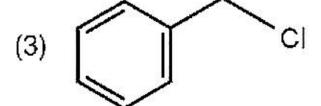
Answer (3)

99. Copper crystallises in fcc unit cell with cell edge length of 3.608×10^{-8} cm. The density of copper is 8.92 g cm^{-3} . Calculate the atomic mass of copper.

(1) 63.1 u


(2) 31.55 u


(3) 60 u


(4) 65 u

Answer (1)

100. The product formed from the following reaction sequence is

BOTANY

SECTION-A

101. Given below are two statements : one is labelled as

Assertion (A) and the other is labelled as Reason (R).

Assertion (A):

Polymerase chain reaction is used in DNA amplification.

Reason (R):

The ampicillin resistant gene is used as a selectable marker to check transformation

In the light of the above statements, choose the correct answer from the options given below :

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) (A) is correct but (R) is not correct
- (4) (A) is not correct but (R) is correct

Answer (2)

- 102. The process of translation of mRNA to proteins begins as soon as:
 - (1) The small subunit of ribosome encounters mRNA
 - (2) The larger subunit of ribosome encounters mRNA
 - (3) Both the subunits join together to bind with mRNA
 - (4) The tRNA is activated and the larger subunit of ribosome encounters mRNA

Answer (1)

- 103. The gaseous plant growth regulator is used in plants to:
 - (1) speed up the malting process
 - (2) promote root growth and roothair formation to increase the absorption surface
 - (3) help overcome apical dominance
 - (4) kill dicotyledonous weeds in the fields

Answer (2)

- 104. Exoskeleton of arthropods is composed of :
 - (1) Cutin

(2) Cellulose

(3) Chitin

(4) Glucosamine

Answer (3)

- 105. Which of the following is **not** observed during apoplastic pathway?
 - (1) Movement of water occurs through intercellular spaces and wall of the cells
 - (2) The movement does not involve crossing of cell membrane
 - (3) The movement is aided by cytoplasmic streaming
 - (4) Apoplast is continuous and does not provide any barrier to water movement

- 106. Which of the following is **not** a method of ex situ conservation?
 - (1) In vitro fertilization

(2) National Parks

(3) Micropropagation

(4) Cryopreservation

Answer (2)

107. Match List-II with List-II

	List-I		List-II
(a)	Manganese	(i)	Activates the enzyme catalase
(b)	Magnesium	(ii)	Required for pollen germination
(c)	Boron	(iii)	Activates enzymes of respiration
(d)	Iron	(iv)	Functions in splitting of water during photosynthesis

Choose the correct answer from the options given below:

- (1) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- (2) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- (3) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (4) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

Answer (2)

- 108. Which one of the following statement is not true regarding gel electrophoresis technique?
 - (1) The process of extraction of separated DNA strands from gel is called elution.
 - (2) The separated DNA fragments are stained by using ethidium bromide.
 - (3) The presence of chromogenic substrate gives blue coloured DNA bands on the gel.
 - (4) Bright orange coloured bands of DNA can be observed in the gel when exposed to UV light.

Answer (3)

- 109. Which one of the following is **not** true regarding the release of energy during ATP synthesis through chemiosmosis? It involves:
 - (1) Breakdown of proton gradient
 - (2) Breakdown of electron gradient
 - (3) Movement of protons across the membrane to the stroma
 - (4) Reduction of NADP to NADPH, on the stroma side of the membrane

Answer (2)

- 110. DNA polymorphism forms the basis of :
 - (1) Genetic mapping
 - (2) DNA finger printing
 - (3) Both genetic mapping and DNA finger printing
 - (4) Translation

Answer (3)

- 111. Habitat loss and fragmentation, over exploitation, alien species invasion and co-extinction are causes for:
 - (1) Population explosion

(2) Competition

(3) Biodiversity loss

(4) Natality

- 112. The device which can remove particulate matter present in the exhaust from a thermal power plant is :
 - (1) STP

(2) Incinerator

(3) Electrostatic Precipitator

(4) Catalytic Convertor

Answer (3)

- 113. Which one of the following plants does not show plasticity?
 - (1) Cotton

(2) Coriander

(3) Buttercup

(4) Maize

Answer (4)

- 114. Which one of the following statements cannot be connected to Predation?
 - (1) It helps in maintaining species diversity in a community
 - (2) It might lead to extinction of a species
 - (3) Both the interacting species are negatively impacted
 - (4) It is necessitated by nature to maintain the ecological balance

Answer (3)

- 115. What amount of energy is released from glucose during lactic acid fermentation?
 - (1) Approximately 15%

(2) More than 18%

(3) About 10%

(4) Less than 7%

Answer (4)

116. Given below are two statements:

Statement I:

Mendel studied seven pairs of contrasting traits in pea plants and proposed the Laws of Inheritance.

Statement II:

Seven characters examined by Mendel in his experiment on pea plants were seed shape and colour, flower colour, pod shape and colour, flower position and stem height.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (1)

117. Given below are two statements:

Statement I: Decomposition is a process in which the detritus is degraded into simpler substances by microbes.

Statement II: Decomposition is faster if the detritus is rich in lignin and chitin.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

118.	Read the following statements and choose the set of correct statements:					
	(a)	Euchromatin is loosely packed chromatin				
	(b)	Heterochromatin is transcriptionally active				
	(c)	Histone octomer is wrapped by negatively c	harged D	NA in nucleosome		
	(d)	Histones are rich in lysine and arginine	•			
	(e)	A typical nucleosome contains 400 bp of DN	NA helix			
	Cho	ose the correct answer from the options give	n below :			
	(1)	(b), (d), (e) Only	(2)	(a), (c), (d) Only		
	(3)	(b), (e) Only	(4)	(a), (c), (e) Only		
	Ans	wer (2)				
119.	Whi	ch one of the following plants shows vexillary	aestivati	on and diadelphous stamens?		
a	(1)	Colchicum autumnale	(2)	Pisum sativum		
	(3)	Allium cepa	(4)	Solanum nigrum		
		wer (2)	. ,			
120.		d trees the greater part of secondary xylem is	s dark bro	nwn and resistant to insect attack due to :		
120.	(a)	secretion of secondary metabolities and the				
	(b)	deposition of organic compounds like tanning				
	(c)	deposition of suberin and aromatic substance				
	(d)	deposition of tannins, gum, resin and aroma		3. *		
	(e)	presence of parenchyma cells, functionally				
	Choose the correct answer from the options given below:					
	(1)	(a) and (b) Only	(2)	(c) and (d) Only		
	(3)	(d) and (e) Only	(4)	(b) and (d) Only		
	25 13	wer (1)	, ,			
121.		d the following statements about the vascular	r bûndles			
141,	(a)			rranged in an alternate manner along the different		
	(α)	radii.	idio di o d	ranged in an accordance mainter along the amorem		
	(b)	Conjoint closed vascular bundles do not pos	ssess can	nbium		
	(c)	In open vascular bundles, cambium is prese	ent in betv	ween xylem and phloem		
	(d)	The vascular bundles of dicotyledonous ster	m posses	s endarch protoxylem		
	(e)	In monocotyledonous root, usually there are	more tha	an six xylem bundles present		
	Cho	ose the correct answer from the options giv	en below			
	(1)	(a), (b) and (d) Only	(2)	(b), (c), (d) and (e) Only		
	(3)	(a), (b), (c) and (d) Only	(4)	(a), (c), (d) and (e) Only		
	Ans	wer (NA) No option is correct				
122.	Whi	ch one of the following never occurs during m	nitotic cell	division?		
	(1)	Spindle fibres attach to kinetochores of chro	mosome	S.		
	(2)	Movement of centrioles towards opposite po	oles			
	(3)	Pairing of homologous chromosomes				
	(4)	Coiling and condensation of the chromatids				
	Ans	wer (3)				

123.		Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in							
		plants :	is the	Hormone is known to produce lemale howers in					
	(1)	ABA	(2)	Gibberellin					
	(3)	Ethylene	(4)	Cytokinin					
	• • • • • • • • • • • • • • • • • • • •	swer (3)							
104		flowers are Zygomorphic in:							
124.	(a)	Mustard							
	(b)	Gulmohar							
	(c)	Cassia							
	(d)	Datura							
	(e)	Chilly							
	Cho	ose the correct answer from the options given b	elow						
	(1)	(a), (b), (c) Only	(2)	(b), (c) Only					
	(3)	(d), (e) Only	(4)	(c), (d), (e) Only					
	Ans	swer (2)							
125.	lder	ntify the correct set of statements:							
	(a)	The leaflets are modified into pointed hard thorn							
	(b)	Axillary buds form slender and spirally coiled ter							
	(c)	Stem is flattened and fleshy in <i>Opuntia</i> and mod							
	(d)	Rhizophora shows vertically upward growing roo							
	(e) Cho	Subaerially growing stems in grasses and straw ose the correct answer from the options given b		The space Fresh the shall survive Country and the Fresh the Fresh the State of the space of th					
	(1)	(b) and (c) Only	(2)	(a) and (d) Only					
	(3)		#6 #65	(a), (b), (d) and (e) Only					
	3 6	swer (3)	7						
126.	Whi	ch of the following is incorrectly matched?							
	(1)	Ectocarpus - Fucoxanthin	(2)	Ulothrix - Mannitol					
	(3)	Porphyra - Floridian Starch	(4)	Volvox - Starch					
	Ans	swer (2)							
127.	Whi	ch one of the following produces nitrogen fixing n	odule	es on the roots of Alnus?					
	(1)	Rhizobium	(2)	Frankia					
	(3)	Rhodospirillum	(4)	Beijerinckia					
	Ans	swer (2)							
128.	lder	ntify the incorrect statement related to Pollination							
	(1)	Pollination by water is quite rare in flowering pla							
	(2)	Pollination by wind is more common amongst at							
	(3)	Flowers produce foul odours to attract flies and I							
	90 58500	Moths and butterflies are the most dominant pol							
	3 B	swer (4)		NO NOTE BUILDING HISTORY					
		* :*							

	Statement I:									
	Clei	stogamous flowers are invariably autogamous								
	Stat	tement II :								
	Clei	Cleistogamy is disadvantageous as there is no chance for cross pollination								
	In the light of the above statements, choose the correct answer from the options given below :									
	(1) Both Statement I and Statement II are correct									
	(2) Both Statement I and Statement II are incorrect									
	(3)	Statement I is correct but Statement II is inco	orrect							
	(4)	Statement I is incorrect but Statement II is co	orrect							
	Ans	swer (1)								
130.	Hyd	rocolloid carrageen is obtained from:								
	(1)	Chlorophyceae and Phaeophyceae	(2)	Phaeophyceae and Rhodophyceae						
	(3)	Rhodophyceae only	(4)	Phaeophyceae only						
	Ans	swer (3)								
131.	Wha	at is the net gain of ATP when each molecule of	f glucos	se is converted to two molecules of pyruvic acid?						
	(1)	Four	(2)	Six						
	(3)	Two	(4)	Eight						
	Ans	wer (3)	1 12	~						
132.	The	appearance of recombination nodules on home	ologous	chromosomes during meiosis characterizes :						
o e.e.	(1)	Synaptonemal complex	(2)	Bivalent						
	(3)	Sites at which crossing over occurs	(4)	Terminalization						
	` '	swer (3)	()							
133.		en below are two statements :								
100.		tement I :								
		primary CO ₂ acceptor in C ₄ plants is phosphoe	nolpyri	uvate and is found in the mesophyll cells.						
		ement II :	1.7							
			In the I	ight of the above statements, choose the correct						
Mesophyll cells of C_4 plants lack RuBisCo enzyme. In the light of the above statements, choose the answer from the options given below:										
	(1)									
	(2) Both Statement I and Statement II are incorrect									
	(3)	Statement I is correct but Statement II is inco								
	(4) Statement I is incorrect but Statement II is correct									
	, ,	wer (1)								
134.	"Cir	dling Experiment" was performed by Plant Phys	siologies	te to identify the plant fieeus through which:						
104.	(1)	water is transported	(2)	food is transported						
	(3)	for both water and food transportation	(4)	osmosis is observed						
	, ,	swer (2)	(*)	031110313 13 00301 4 0 0						
125										
135.		type of sex determination can be found in :	(2)	Dirde						
	(1) (3)	Drosophila Grasshoppers	(2)	Birds Monkeys						
	8 8	swer (3)	(4)	IVIOLINGYS						
	Alla	, we i to	2-							
		- 27	·							

129. Given below are two statements:

SECTION-B

- 136. Addition of more solutes in a given solution will:
 - (1) raise its water potential

(2) lower its water potential

- (3) make its water potential zero
- (4) not affect the water potential at all

Answer (2)

- 137. If a geneticist uses the blind approach for sequencing the whole genome of an organism, followed by assignment of function to different segments, the methodology adopted by him is called as:
 - (1) Sequence annotation

(2) Gene mapping

(3) Expressed sequence tags

(4) Bioinformatics

Answer (1)

- 138. Which of the following occurs due to the presence of autosome linked dominant trait?
 - (1) Sickle cell anaemia

(2) Myotonic dystrophy

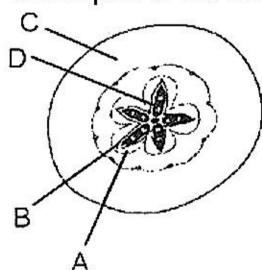
(3) Haemophilia

(4) Thalessemia

Answer (2)

139. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): Mendel's law of Independent assortment does not hold good for the genes that are located closely on the same chromosome.


Reason (R): Closely located genes assort independently.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) (A) is correct but (R) is not correct
- (4) (A) is not correct but (R) is correct

Answer (3)

140. Which part of the fruit, labelled in the given figure makes it a false fruit?

(1) $A \rightarrow Mesocarp$

(2) $B \rightarrow Endocarp$

(3) $C \rightarrow Thalamus$

(4) $D \rightarrow Seed$

Answer (3)

- 141. Read the following statements on lipids and find out correct set of statements:
 - (a) Lecithin found in the plasma membrane is a glycolipid.
 - (b) Saturated fatty acids possess one or more c = c bonds
 - (c) Gingely oil has lower melting point, hence remains as oil in winter
 - (d) Lipids are generally insoluble in water but soluble in some organic solvents
 - (e) When fatty acid is esterified with glycerol, monoglycerides are formed

Choose the correct answer from the option given below:

(1) (a), (b) and (c) only

(2) (a), (d) and (e) only

(3) (c), (d) and (e) only

(4) (a), (b) and (d) only

- 142. Transposons can be used during which one of the following?
 - (1) Polymerase Chain Reaction

(2) Gene Silencing

(3) Autoradiography

(4) Gene sequencing

Answer (2)

143. While explaining interspecific interaction of population, (+) sign is assigned for beneficial interaction, (-) sign is assigned for detrimental interaction and (0) for neutral interaction. Which of the following interactions can be assigned (+) for one specifies and (-) for another specifies involved in the interaction?

(1) Predation

(2) Amensalim

(3) Commensalism

(4) Competition

Answer (1)

144. In the following palindromic base sequences of DNA, which one can be cut easily by particular restriction enzyme?

(1) 5'GATACT3'; 3'CTATGA5'

(2) 5'GAATTC3'; 3'CTTAAG5'

(3) 5'CTCAGT3'; 3'GAGTCA5'

(4) 5'GTATTC3'; 3'CATAAG5'

Answer (2)

145. Which one of the following will accelerate phosphorus cycle?

(1) Burning of fossil fuels

(2) Volcanic activity

(3) Weathering of rocks

(4) Rain fall and storms

Answer (3)

- 146. The entire fleet of buses in Delhi were converted to CNG from diesel. In reference to this, which one of the following statements is false?
 - (1) CNG burns more efficiently than diesel
 - (2) The same diesel engine is used in CNG buses making the cost of conversion low
 - (3) It is cheaper than diesel
 - (4) It cannot be adulterated like diesel

Answer (2)

147. Match the plant with the kind of life cycle it exhibits:

	List-I		List-II
(a)	Spirogyra	(i)	Dominant diploid sporophyte vascular plant, with highly reduced male or female gametophyte
(b)	Fern	(ii)	Dominant haploid free-living gametophyte
(c)	Funaria	(iii)	Dominant diploid sporophyte alternating with reduced gametophyte called prothallus
(d)	Cycas	(iv)	Dominant haploid leafy gametophyte alternating with partially dependent multicellular sporophyte

Choose the correct answer from the options given below:

(1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

(2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

(3) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

(4) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)

148. Match List-I with List-II.

	List-I		List-II
(a)	Metacentric chromosome	(i)	Centromere situated close to the end forming one extremely short and one very long arms
(b)	Acrocentric chromosome	(ii)	Centromere at the terminal end
(c)	Submetacentric	(iii)	Centromere in the middle forming two equal arms of chromosomes
(d)	Telocentric chromosome	(iv)	Centromere slightly away from the middle forming one shorter arm and one longer arm

Choose the correct answer from the options given below:

(1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

(2) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)

(3) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

(4) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)

Answer (1)

- 149. The anatomy of springwood shows some peculiar features. Identify the **correct** set of statements about springwood.
 - (a) It is also called as the earlywood
 - (b) In spring season cambium produces xylem elements with narrow vessels
 - (c) It is lighter in colour
 - (d) The springwood along with autumnwood shows alternate concentric rings forming annual rings
 - (e) It has lower density

Choose the correct answer from the options given below:

- (1) (a), (b), (d) and (e) Only
- (2) (a), (c), (d) and (e) Only
- (3) (a), (b) and (d) Only
- (4) (c), (d) and (e) Only

Answer (2)

- 150. What is the role of large bundle sheath cells found around the vascular bundles in C4 plants?
 - (1) To provide the site for photorespiratory pathway
 - (2) To increase the number of chloroplast for the operation of Calvin cycle
 - (3) To enable the plant to tolerate high temperature
 - (4) To protect the vascular tissue from high light intensity

ZOOLOGY

SECTION-A

151. Given below are two statements:

Statement I: Fatty acids and glycerols cannot be absorbed into the blood.

Statement II: Specialized lymphatic capillaries called lacteals carry chylomicrons into lymphatic vessels and ultimately into the blood.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (1)

152. Given below are two statements:

Statement I:

The release of sperms into the seminiferous tubules is called spermiation.

Statement II:

Spermiogenesis is the process of formation of sperms from spermatogonia.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (3)

- 153. Which of the following is not the function of conducting part of respiratory system?
 - (1) It clears inhaled air from foreign particles
 - (2) Inhaled air is humidified
 - (3) Temperature of inhaled air is brought to body temperature
 - (4) Provides surface for diffusion of O2 and CO2

Answer (4)

- 154. Identify the microorganism which is responsible for the production of an immunosuppressive molecule cyclosporin A:
 - (1) Trichoderma polysporum
 - (2) Clostridium butylicum
 - (3) Aspergillus niger
 - (4) Streptococcus cerevisiae

Answer (1)

155.	Und	er normal physiological conditions in human being every 100 ml of oxygenated blood can deliver ml of O ₂ to the tissues.
	(1)	The state of the s
	(2)	5 ml
	(3)	4 ml
	(4)	10 ml
	•	swer (2)
156.		mina in cockroach, arises from
.00.	(1)	Prothorax
	(2)	Mesothorax
	(3)	Metathorax
	(4)	Prothorax and Mesothorax
		swer (2)
157.		itu conservation refers to:
107.	100	Protect and conserve the whole ecosystem
	(1)	30 NOTICE OF THE PROPERTY OF THE PROPERTY OF THE THEORY OF
	(2)	Conserve only high-risk species
	(3)	Conserve only endangered species
	(4)	Conserve only extinct species
	Ans	swer (1)
158.	Detr	ritivores breakdown detritus into smaller particles. This process is called:
	(1)	Catabolism
	(2)	Fragmentation
	(3)	Humification
	(4)	Decomposition
	Ans	wer (2)
159.		shydration reaction links two glucose molecules to product maltose. If the formula for glucose is $C_6H_{12}O_6$ what is the formula for maltose?
	(1)	C ₁₂ H ₂₀ O ₁₀
	(2)	C ₁₂ H ₂₄ O ₁₂
	(3)	C ₁₂ H ₂₂ O ₁₁
	(4)	C ₁₂ H ₂₄ O ₁₁
	Ans	wer (3)
160.	Ider	tify the asexual reproductive structure associated with Penicillium:
	(1)	Zoospores
	(2)	Conidia
	(3)	Gemmules
	A 375	Buds
	Ans	swer (2)

- 161. Select the incorrect statement with reference to mitosis:
 - (1) All the chromosomes lie at the equator at metaphase
 - (2) Spindle fibres attach to centromere of chromosomes
 - (3) Chromosomes decondense at telophase
 - (4) Splitting of centromere occurs at anaphase

Answer (2)

- 162. Which of the following statements with respect to Endoplasmic Reticulum is incorrect?
 - (1) RER has ribosomes attached to ER
 - (2) SER is devoid of ribosomes
 - (3) In prokaryotes only RER are present
 - (4) SER are the sites for lipid synthesis

Answer (3)

- 163. In the taxonomic categories which hierarchical arrangement in ascending order is **correct** in case of animals?
 - (1) Kingdom, Phylum, Class, Order, Family, Genus, Species
 - (2) Kingdom, Class, Phylum, Family, Order, Genus, Species
 - (3) Kingdom, Order, Class, Phylum, Family, Genus, Species
 - (4) Kingdom, Order, Phylum, Class, Family, Genus, Species

Answer (1*)

- 164. In which of the following animals, digestive tract has additional chambers like crop and gizzard?
 - (1) Corvus, Columba, Chameleon
 - (2) Bufo, Balaenoptera, Bangarus
 - (3) Catla, Columba, Crocodilus
 - (4) Pavo, Psittacula, Corvus

Answer (4)

165. Given below are two statements:

Statement I: Mycoplasma can pass through less than 1 micron filter size.

Statement II: Mycoplasma are bacteria with cell wall.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

166.	Which of the following is not a connective tissue?						
	(1)	1) Blood					
	(2)	Adipose tissue					
	(3)	Cartilage					
	(4)	Neuroglia					
	Ans	swer (4)					
167.	Nitrogenous waste is excreted in the form of pellet or paste by :						
	(1)	(1) Ornithorhynchus					
	(2)	Salamandra					
	(3)	Hippocampus					
	(4)	Pavo					
	Answer (4)						
168.	Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).						
		Assertion (A): All vertebrates are chordates but all chordates are not vertebrates.					
	Reason (R): Notochord is replaced by vertebral column in the adult vertebrates.						
	In th	ne light of the above statements, choose the most appropriate answer from the option given below :					
	(1)	Both (A) and (R) are correct and (R) is the correct explanation of (A)					
	(2)	Both (A) and (R) are correct but (R) is not the correct explanation of (A)					
	(3)	(A) is correct but (R) is not correct					
	(4)	(A) is not correct but (R) is correct					
	Answer (1)						
169.	Which of the following is a correct match for disease and its symptoms?						
	(1)	1) Arthritis – Inflammed joints					
	(2)	Tetany – High Ca ²⁺ level causing rapid spasms.					
	(3)	Myasthenia gravis – Genetic disorder resulting in weakening and paralysis of skeletal muscle					
	(4)	Muscular dystrophy – An auto immune disorder causing progressive degeneration of skeletal muscle					
	Answer (1)						
170.	Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).						
	Assertion (A): Osteoporosis is characterised by decreased bone mass and increased chance of fractures.						
	Reason (R): Common cause of osteoporosis is increased levels of estrogen.						
	In the light of the above statements, choose the most appropriate answer from the options given below.						
	(1)	Both (A) and (R) are correct and (R) is the correct explanation of (A)					
	(2)	Both (A) and (R) are correct but (R) is not the correct explanation of (A)					
	(3)	(A) is correct but (R) is not correct					
	(4)	(A) is not correct but (R) is correct					
	Ans	Answer (3)					

- In an *E. Coli* strain *i* gene gets mutated and its product can not bind the inducer molecule. If growth medium is provided with lactose, what will be the outcome?
 - (1) Only z gene will get transcribed
 - (2) z, y, a genes will be transcribed
 - (3) z, y, a genes will not be translated
 - (4) RNA polymerase will bind the promoter region

Answer (3)

- 172. If the length of a DNA molecule is 1.1 metres, what will be the approximate number of base pairs?
 - (1) 3.3×10^9 bp
 - (2) 6.6×10^9 bp
 - (3) 3.3×10^6 bp
 - (4) 6.6×10^6 bp

Answer (1)

- 173. Which of the following statements are true for spermatogenesis but do not hold true for Oogenesis?
 - (a) It results in the formation of haploid gametes
 - (b) Differentiation of gamete occurs after the completion of meiosis
 - (c) Meiosis occurs continuously in a mitotically dividing stem cell population
 - (d) It is controlled by the Luteinising hormone (LH) and Follicle Stimulating Hormone (FSH) secreted by the anterior pituitary
 - (e) It is initiated at puberty

Choose the most appropriate answer from the options given below:

- (1) (c) and (e) only
- (2) (b) and (c) only
- (3) (b), (d) and (e) only
- (4) (b), (c) and (e) only

Answer (4)

- 174. Which of the following is present between the adjacent bones of the vertebral column?
 - (1) Intercalated discs
 - (2) Cartilage
 - (3) Areolar tissue
 - (4) Smooth muscle

- 175. Regarding Meiosis, which of the statements is incorrect?
 - (1) There are two stages in Meiosis, Meiosis-I and II
 - (2) DNA replication occurs in S phase of Meiosis-II
 - (3) Pairing of homologous chromosomes and recombination occurs in Meiosis-I
 - (4) Four haploid cells are formed at the end of Meiosis-II

Answer (2)

176. Given below are two statements:

Statement I:

Autoimmune disorder is a condition where body defense mechanism recognizes its own cells as foreign bodies.

Statement II:

Rheumatoid arthritis is a condition where body does not attack self cells.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (3)

- 177. Natural selection where more individuals acquire specific character value other than the mean character value, leads to
 - (1) Stabilising change
 - (2) Directional change
 - (3) Disruptive change
 - (4) Random change

Answer (2)

178. Given below are two statements:

Statement I: The coagulum is formed of network of threads called thrombins.

Statement II: Spleen is the graveyard of erythrocytes.

In the light of the above statements, choose the most appropriate answer from the options given below :

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (4)

- 179. Breeding crops with higher levels of vitamins and minerals or higher proteins and healthier fats is called:
 - (1) Bio-magnification
 - (2) Bio-remediation
 - (3) Bio-fortification
 - (4) Bio-accumulation

- 180. In gene therapy of Adenosine Deaminase (ADA) deficiency, the patient requires periodic infusion of genetically engineered lymphocytes because:
 - (1) Retroviral vector is introduced into these lymphocytes.
 - (2) Gene isolated from marrow cells producing ADA is introduced into cells at embryonic stages
 - (3) Lymphocytes from patient's blood are grown in culture, outside the body.
 - (4) Genetically engineered lymphocytes are not immortal cells.

Answer	ıΛ
MIIOMEI	17

- 181. At which stage of life the oogenesis process is initiated?
 - (1) Puberty
 - (2) Embryonic development stage
 - (3) Birth
 - (4) Adult

Answer (2)

- 182. Lippe's loop is a type of contraceptive used as:
 - (1) Cervical barrier
 - (2) Vault barrier
 - (3) Non-Medicated IUD
 - (4) Copper releasing IUD

Answer (3)

- 183. Which of the following functions is **not** performed by secretions from salivary glands?
 - (1) Control bacterial population in mouth
 - (2) Digestion of complex carbohydrates
 - (3) Lubrication of oral cavity
 - (4) Digestion of disaccharides

Answer (4)

- 184. If '8' *Drosophila* in a laboratory population of '80' died during a week, the death rate in the population is _____ individuals per *Drosophila* per week.
 - (1) 0.1
 - (2) 10
 - (3) 1.0
 - (4) zero

Answer (1)

185. Given below are two statements:

Statement I:

Restriction endonucleases recognise specific sequence to cut DNA known as palindromic nucleotide sequence.

Statement II:

Restriction endonucleases cut the DNA strand a little away from the centre of the palindromic site.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

SECTION-B

- 186. Which of the following is a correct statement?
 - (1) Cyanobacteria are a group of autotrophic organisms classified under kingdom Monera.
 - (2) Bacteria are exclusively heterotrophic organisms.
 - (3) Slime moulds are saprophytic organisms classified under Kingdom Monera.
 - (4) Mycoplasma have DNA, ribosome and cell wall.

Answer (1)

187. Statements related to human Insulin are given below.

Which statement(s) is/are correct about genetically engineered Insulin?

- (a) Pro-hormone insulin contain extra stretch of C-peptide
- (b) A-peptide and B-peptide chains of insulin were produced separately in *E.coli*, extracted and combined by creating disulphide bond between them.
- (c) Insulin used for treating Diabetes was extracted from Cattles and Pigs.
- (d) Pro-hormone Insulin needs to be processed for converting into a mature and functional hormone.
- (e) Some patients develop allergic reactions to the foreign insulin.

Choose the most appropriate answer from the options given below:

- (1) (a), (b) and (d) only
- (2) (b) only
- (3) (c) and (d) only
- (4) (c), (d) and (e) only

Answer (2)

188. Given below are two statements:

Statements I: In a scrubber the exhaust from the thermal plant is passed through the electric wires to charge the dust particles.

Statement II: Particulate matter (PM 2.5) cannot be removed by scrubber but can be removed by an electrostatic precipitator.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

- 189. The recombination frequency between the genes a & c is 5%, b & c is 15%, b & d is 9%, a & b is 20%, c & d is 24% and a & d is 29%. What will be the sequence of these genes on a linear chromosome?
 - (1) a, d, b, c

(2) d, b, a, c

(3) a, b, c, d

(4) a, c, b, d

Answer (4)

190. Match List-II with List-II

	List-l (Biological Molecules)		List-II (Biological functions)
(a)	Glycogen	(i)	Hormone
(b)	Globulin	(ii)	Biocatalyst
(c)	Steroids	(iii)	Antibody
(d)	Thrombin	(iv)	Storage product

Choose the correct answer from the options given below:

- (1) (a) (iii), (b) (ii), (c) (iv), (d) (i)
- (2) (a) (iv), (b) (ii), (c) (i), (d) (iii)
- (3) (a) (ii), (b) (iv), (c) (iii), (d) (i)
- (4) (a) (iv), (b) (iii), (c) (i), (d) (ii)

Answer (4)

191. Match List-I with List-II with respect to methods of Contraception and their respective actions.

	List-I		List-II
(a)	Diaphragms	(i)	Inhibit ovulation and Implantation
(b)	Contraceptive Pills	(ii)	Increase phagocytosis of sperm within Uterus
(c)	Intra Uterine Devices	(iii)	Absence of Menstrual cycle and ovulation following parturition
(d)	Lactational Amenorrhea	(iv)	They cover the cervix blocking the entry of sperms

Choose the correct answer from the options given below:

- (1) (a) (iv), (b) (i), (c) (iii), (d) (ii)
- (2) (a) (iv), (b) (i), (c) (ii), (d) (iii)
- (3) (a) (ii), (b) (iv), (c) (i), (d) (iii)
- (4) (a) (iii), (b) (ii), (c) (i), (d) (iv)

192.	₩hi	hich of the following are not the effects of Parathyroid hormone?						
	(a)	Stimulates the process of bone resorption						
	(b)							
	(c)	Reabsorption of Ca ²⁺ by renal tubules						
	(d)							
	(e)	Increases metabolism of carbohydrates						
		ose the most appropriate answer from the option	ns gr	ven below:				
	(1)							
	(2)	(b), (d) and (e) only						
	(3)	(a) and (e) only						
	(4)	(b) and (c) only swer (2)						
102								
193.	Sele	ect the incorrect statement with respect to acquir	ed im	nmunity.				
	(1)	Primary response is produced when our body e	ncour	nters a pathogen for the first time.				
	(2)	Anamnestic response is elicited on subsequent	enco	unters with the same pathogen.				
	(3) Anamnestic response is due to memory of first encounter.							
	(4) Acquired immunity is non-specific type of defense present at the time of birth.							
	Ans	swer (4)						
194.	Ten	E.coli cells with ¹⁵ N - dsDNA are incubated in me	edium	containing ¹⁴ N nucleotide. After 60 minutes, how				
	many <i>E.coli</i> cells will have DNA totally free from ¹⁵ N?							
	(1) 20 cells							
	(2)	40 cells						
	(3)	60 cells						
	(4)							
	Answer (3)							
195.	If a	colour blind female marries a man whose mother	er wa	s also colour blind, what are the chances of her				
5) CHC286		geny having colour blindness?		one and the property of the control				
	(1)	25%	(2)	50%				
	(3)	75%	(4)	100%				
	Answer (4)							
196.	Whi	ch of the following is not a desirable feature of a	clonir	ng vector?				
	(1)	Presence of origin of replication						
	(2)	Presence of a marker gene						
	(3)	Presence of single restriction enzyme site						
	10.000							
	(4)	Presence of two or more recognition sites						

Answer (4)

197. Match List-II with List-II

	List-l	6	List-II
(a)	Bronchioles	(i)	Dense Regular Connective Tissue
(b)	Goblet Cell	(ii)	Loose Connective Tissue
(c)	Tendons	(iii)	Glandular Tissue
(d)	Adipose Tissue	(iv)	Ciliated Epithelium

Choose the correct answer from the options given below:

(1) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)

(2) (a) - (i), (b) - (ii), (c) - (iii), (d) - (iv)

(3) (a) - (ii), (b) - (i), (c) - (iv), (d) - (iii)

(4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

Answer (1)

198. Which one of the following statements is correct?

- (1) The atrio-ventricular node (AVN) generates an action potential to stimulate atrial contraction
- (2) The tricuspid and the bicuspid valves open due to the pressure exerted by the simultaneous contraction of the atria
- (3) Blood moves freely from atrium to the ventricle during joint diastole.
- (4) Increased ventricular pressure causes closing of the semilunar valves.

Answer (3)

199. Select the incorrect statement regarding synapses :

- (1) The membranes of presynaptic and postsynaptic neurons are in close proximity in an electrical synapse.
- (2) Electrical current can flow directly from one neuron into the other across the electrical synapse.
- (3) Chemical synapses use neurotransmitters
- (4) Impulse transmission across a chemical synapse is always faster than that across an electrical synapse.

Answer (4)

200. Which of the following statements is not true?

- (1) Analogous structures are a result of convergent evolution
- (2) Sweet potato and potato is an example of analogy
- (3) Homology indicates common ancestry
- (4) Flippers of penguins and dolphins are a pair of homologous organs